
Cryptanalysis TP5: Attaque sur CSS

Attaque sur CSS

Dans ce TP vous pouvez réutiliser les fonctions LFSR_Step et LFSR issues du TP2
(récupérez le fichier tp5_code.py).

Le Content Scrambling System (CSS) est utilisé pour sécuriser le contenu des disques
DVDs. CSS souffre de plusieurs faiblesses. Nous discutons ici du stream cipher CSS
utilisé pour chiffrer les contenus des films. CSS a été conçu dans les années 1980 quand
le chiffrement exportable était restreint à 40 bits. En conséquence, CSS utilise des clés
secrètes de 40 bits.

Le PRG de CSS (Algorithm 1)1 utilise deux LFSRs.

Algorithm 1 CSS

Entrée : seed s ∈ {0, 1}40

Écrire s = s1∥s2 où s1 ∈ {0, 1}16 et s2 ∈ {0, 1}24
Charger s1∥1 dans le LFSR de 17 bits
Charger s2∥1 dans le LFSR de 25 bits
c← 0 ▷ carry bit
for i = 1 à N do

exécuter les deux LFSRs pendant 8 cycles et obtenir x, y ∈ {0, 1}8
traiter x et y comme des entiers dans 0 . . . 255
Renvoyer z = x+ y + c mod 256
si x+ y > 255, alors c← 1, sinon c← 0 ▷ carry bit

end for

Le PRG retourne un octet à chaque itération. L’ajout du bit à 1 pour s1 et s2 garantit
que les LFSRs ne seront pas initialisés à 0. Les polynômes de rétroaction des LFSR de
17 et 25 bits sont respectivement :{

P17 = X17 +X3 + 1

P25 = X25 +X22 +X21 +X13 + 1

Ces deux polynômes sont primitifs.

Question 1. Programmez le PRG de CSS. Pour représenter simplement la sortie, utilisez
une liste d’entiers python entre 0 et 255.

Question 2. Soit x1, x2, x3 les 3 premiers octets de sortie du LFSR de 17 bits. Montrez
que l’état initial s2 du second LFSR peut être obtenu en fonction de (z1, z2, z3) (les trois
premiers octets de sortie du PRG) et (x1, x2, x3).

1Il s’agit en réalité d’une petite variation ; dans le véritable CSS le chargement des clés et l’exécution
sont un peu différents.

1/2



Cryptanalysis TP5: Attaque sur CSS

Question 3. On suppose que l’on connâıt les 5 premiers octets z1, z2, . . . , z5. Montez une
attaque du type guess-and-determine de complexité 216.

Question 4. Programmez l’attaque contre ce générateur.

A1 A2 A3 A4 A5

F F F F F

B1 B2 B3 B4 B5

F F F F F

C1 C2 C3 C4 C5

K1 K2 K3 K4 K5

K1 K2 K3 K4 K5

Figure 1: “Mangling function” dans CSS.

Pour certaines applications de CSS, la suite chiffrante n’est pas immédiatement XORée
au clair. Soient K1, . . . , K5 5 octets de la suite chiffrante. On définit une bôıte S notée
F , dont on suppose qu’elle est connue et publique. En partant de cinq octets de clair
A1, . . . , A5, les 5 octets de chiffré C1, . . . , C5 sont obtenus à l’aide d’une “mangling func-
tion” représentée sur la Figure 1. Sur cette figure, les ⊕ indiquent des XOR où intervi-
ennent les octets de suite chiffrante et des valeurs intermédiaires ; les Bi sont également
des valeurs intermédiaires.

Question 5. Montrer qu’à partir de 5 octets de clair et de chiffré connu, on peut retrouver
5 octets de suite chiffrante (de manière beaucoup plus efficace que la force brute).

2/2


