

In this TP we consider a compression function h that takes an n -bit message block m and an index i , and returns an n -bit string:

$$h : \mathbb{N} \times \{0, 1\}^n \rightarrow \{0, 1\}^n .$$

The function h is defined in the file `tp4_code.py`, where $n := 48$. For compactness, both input and output values are encoded as python integers.

For a fixed integer k , we use h to define a k -block hash function as follows:

$$\begin{cases} H : (\{0, 1\}^n)^k \rightarrow \{0, 1\}^n \\ m_0, \dots, m_{k-1} \mapsto \left(\bigoplus_{i=0}^{k-1} h(i, m_i) \right) \end{cases} \quad (1)$$

k-Collisions

Let c, m be two integers. Let L_i, L_j be two lists of pairs $(h(i, x), x)$ and $(h(j, y), y)$ respectively, which are sorted using lexicographic ordering of the bit-strings $h(i, x)$ and $h(j, y)$ (LSBs first). In the file `tp4_code.py` we provide several functions to facilitate the manipulation of integers instead of bit-strings:

- Of course, the \wedge operator on integers takes the XOR of the bit-strings;
- The function `lower(x, y, c)` returns True iff the value of the c LSBs of x is strictly lower (in lexicographic ordering) than the one of y ;
- The function `eq(x, y, c)` returns True iff they are equal;
- The function `sort(l)` sorts a list of integer tuples according to the lexicographic ordering of the bit-string of the first value.

The c LSBs of a bit-string / integer x are noted $x|_c$.

Let $L_i \bowtie_c L_j$ be the sorted list of tuples:

$$L_i \bowtie_c L_j = \text{sort}(\{(h(i, x) \oplus h(j, y), x, y), x \in L_i, y \in L_j, (h(i, x) \oplus h(j, y))|_c = 0\}) .$$

also represented as a *sorted list*. The list $L_i \bowtie_c L_j$ will be called “merged list”. In other words, we are computing a list of *partial collision* pairs, where the c LSBs of the pairs collide.

Question 1. Show that there exists an algorithm that, on input L_i, L_j , returns $L_i \bowtie_c L_j$, of complexity: $\tilde{\mathcal{O}}(\max(|L_i|, |L_j|, |L_i \bowtie_c L_j|))$.

Question 2. Implement this algorithm in a general setting, when the two lists are lists of tuples of integers, lexicographically sorted according to the first value (see the description in `tp4_code.py`).

Question 3. Fix $i, j = 1, 2$ and $c = n/3$. Asymptotically, what is the expected size of $L_1 \bowtie_c L_2$?

Question 4. Let $k = 4$. Find an algorithm of complexity $\mathcal{O}(2^{n/3})$ that finds a preimage of 0 by H . Implement this attack.

Question 5. Can we improve this complexity? How does it depend on the value of k ?

Reference

David A. Wagner: A Generalized Birthday Problem. CRYPTO 2002: 288-303.