
Cryptanalysis TP4: k-Collisions

In this TP we consider a compression function h that takes an n-bit message block m
and an index i, and returns an n-bit string:

h : N× {0, 1}n → {0, 1}n .

The function h is defined in the file tp4_code.py, where n := 48. For compactness,
both input and output values are encoded as python integers.

For a fixed integer k, we use h to define a k-block hash function as follows:{
H : ({0, 1}n)k → {0, 1}n

m0, . . . ,mk−1 7→
(⊕k−1

i=0 h(i,mi)
)

(1)

k-Collisions

Let c,m be two integers. Let Li, Lj be two lists of pairs (h(i, x), x) and (h(j, y), y)
respectively, which are sorted using lexicographic ordering of the bit-strings h(i, x) and
h(j, y) (LSBs first). In the file tp4_code.py we provide several functions to facilitate the
manipulation of integers instead of bit-strings:

• Of course, the ^ operator on integers takes the XOR of the bit-strings;
• The function lower(x,y,c) returns True iff the value of the c LSBs of x is strictly
lower (in lexicographic ordering) than the one of y;

• The function eq(x,y,c) returns True iff they are equal;
• The function sort(l) sorts a list of integer tuples according to the lexicographic
ordering of the bit-string of the first value.

The c LSBs of a bit-string / integer x are noted x|c.
Let Li ▷◁c Lj be the sorted list of tuples:

Li ▷◁c Lj = sort ({(h(i, x)⊕ h(j, y), x, y), x ∈ Li, y ∈ Lj, (h(i, x)⊕ h(j, y))|c = 0}) .

also represented as a sorted list. The list Li ▷◁c Lj will be called “merged list”. In other
words, we are computing a list of partial collision pairs, where the c LSBs of the pairs
collide.

Question 1. Show that there exists an algorithm that, on input Li, Lj, returns Li ▷◁c Lj,

of complexity: Õ(max(|Li|, |Lj|, |Li ▷◁c Lj|)).

Question 2. Implement this algorithm in a general setting, when the two lists are lists of
tuples of integers, lexicographically sorted according to the first value (see the description
in tp4_code.py).

Question 3. Fix i, j = 1, 2 and c = n/3. Asymptotically, what is the expected size of
L1 ▷◁c L2?

Question 4. Let k = 4. Find an algorithm of complexity O
(
2n/3

)
that finds a preimage

of 0 by H. Implement this attack.

Question 5. Can we improve this complexity? How does it depend on the value of k?

Reference

David A. Wagner: A Generalized Birthday Problem. CRYPTO 2002: 288-303.

1/1

