Cryptanalysis TP4: k-Collisions

In this TP we consider a compression function A that takes an n-bit message block m
and an index ¢, and returns an n-bit string:

h: Nx{0,1}" = {0,1}" .

The function h is defined in the file tp4_code.py, where n := 48. For compactness,
both input and output values are encoded as python integers.
For a fixed integer k, we use h to define a k-block hash function as follows:

{H: {0, 13MF = 0,1}

0y ey Mg <@f;()1h(iumi)) (1)

k-Collisions

Let ¢,m be two integers. Let L;,L; be two lists of pairs (h(i,z),z) and (h(j,y),y)
respectively, which are sorted using lexicographic ordering of the bit-strings h(i,z) and
h(j,y) (LSBs first). In the file tp4_code.py we provide several functions to facilitate the
manipulation of integers instead of bit-strings:

e Of course, the ~ operator on integers takes the XOR of the bit-strings;

e The function lower(x,y,c) returns True iff the value of the ¢ LSBs of x is strictly
lower (in lexicographic ordering) than the one of y;

e The function eq(x,y,c) returns True iff they are equal;

e The function sort (1) sorts a list of integer tuples according to the lexicographic
ordering of the bit-string of the first value.

The ¢ LSBs of a bit-string / integer x are noted z|..
Let L; ><. L; be the sorted list of tuples:

Li <. Lj = sort ({(h(i,z) ® h(j,y), 2, y),z € Li,y € Ly, (h(i,) © h(j,y))]c = 0}) .

also represented as a sorted list. The list L; >i. L; will be called “merged list”. In other
words, we are computing a list of partial collision pairs, where the ¢ LSBs of the pairs
collide.

Question 1. Show that there exists an algorithm that, on input L;, L;, returns L; <, L;,
of complexity: O(max(|L;|,|L;|, |L; > Ljl|)).

Question 2. Implement this algorithm in a general setting, when the two lists are lists of
tuples of integers, lexicographically sorted according to the first value (see the description
in tp4_code.py).

Question 3. Fiz i,j = 1,2 and ¢ = n/3. Asymptotically, what is the expected size of
L1 >, LQQ

Question 4. Let k = 4. Find an algorithm of complexity (9(2"/3) that finds a preimage
of 0 by H. Implement this attack.

Question 5. Can we improve this complexity? How does it depend on the value of k?

Reference

David A. Wagner: A Generalized Birthday Problem. CRYPTO 2002: 288-303.

