

Introduction to LFSRs

In the following we consider LFSRs on \mathbb{F}_2 . You may start from the file `tp2_code.py`.

Question 1. Write a function `LFSR_step(P, state)` that simulates one step of an LFSR. It takes as input a retroaction polynomial $P \in \mathbb{F}_2[X]$ (represented as a list of bits) and the state S_t (represented as a list of bits), and returns the state at time $t + 1$ and the output at time t .

(Recall that the XOR operator in Python is `^`.)

Question 2. Write a function `LFSR(P, state, N)` that takes a retroaction polynomial, the initial state S_0 and an integer N , and returns the N first elements of the output of the LFSR of retroaction P , initialized with S_0 .

Question 3. Check that the LFSR of length 5 and retroaction polynomial $P(X) = 1 + X^4 + X^5 \in \mathbb{F}_2[X]$, initialized by $S_0 = (0, 0, 1, 0, 1)$, returns a sequence starting with $0, 0, 1, 0, 1, 0, 1, \dots$. What is its period?

Cycles

Question 4. Write a function that takes the initial state S_0 of an LFSR and its polynomial P , and returns the set of all different internal states S_0, S_1, \dots, S_{T-1} obtained on a period.

Question 5. Test with $P(X) = 1 + X^4 + X^5 \in \mathbb{F}_2[X]$ and the initial states $(0, 0, 1, 0, 1)$, $(0, 1, 0, 0, 0)$, $(1, 0, 1, 0, 0)$. What do you notice?

Question 6. Write a function taking as input the retroaction polynomial and returning all the possible cycles (by making the initial state vary).

Question 7. How many cycles are produced by the LFSR of length 5 and retroaction polynomial P ? Same question with the LFSR of length 4 and polynomials:

- $1 + X^2 + X^4$
- $1 + X + X^2 + X^3 + X^4$
- $1 + X + X^4$

The Berlekamp-Massey Algorithm

LFSRs are very fast, they output sequences with very large periods, and good statistical properties. However they are not enough to make secure stream ciphers: indeed the sequence generated by an LFSR is predictable.

Question 8. Let $(s_n)_{n \in \mathbb{N}}$ be the sequence generated by an LFSR. Let $\Lambda(s)$ be its linear complexity (the degree of the minimal polynomial).

Show that $2\Lambda(s)$ consecutive terms of the sequence are sufficient to characterize s . More precisely, show that if we know $\Lambda(s)$, as well as $2\Lambda(s)$ consecutive terms of s , then we can compute the minimal polynomial P .

Indication: write the coefficients of P as the unknowns in a linear system.

Question 9. Suppose that we know an upper bound $\Lambda(s) \leq \ell$. Deduce an algorithm that takes s as input and returns $\Lambda(s)$, as well as the retroaction polynomial, in time $\mathcal{O}(\ell^4)$.

Algorithm 1 Berlekamp-Massey algorithm.

Input: sequence $\mathbf{s} = (s_0, \dots, s_{n-1})$ of elements in \mathbb{F}_q
Output: $\Lambda(\mathbf{s})$ and P , the minimal retroaction polynomial

```

1:  $P(X) \leftarrow 1$ 
2:  $Q(X) \leftarrow 1$ 
3:  $\Lambda \leftarrow 0$ 
4:  $m \leftarrow -1$ 
5:  $d' \leftarrow 1$ 
6: for  $t \in \{0, \dots, n-1\}$  do
7:    $d \leftarrow s_t + \sum_{i=1}^{\Lambda} p_i s_{t-i}$ 
8:   if  $d \neq 0$  then
9:      $T(X) \leftarrow P(X)$ 
10:     $P(X) \leftarrow P(X) - d(d')^{-1}Q(X)X^{t-m}$ 
11:    if  $2\Lambda \leq t$  then
12:       $\Lambda \leftarrow t + 1 - \Lambda$ 
13:       $m \leftarrow t$ 
14:       $Q(X) \leftarrow T(X)$ 
15:       $d' \leftarrow d$ 
16:    end if
17:   end if
18: end for
19: Return  $\Lambda$  and  $P(X)$ 
```

This is a polynomial algorithm already, but not very efficient in practice. We can do much better using the Berlekamp-Massey algorithm.

Question 10. Implement the Berlekamp-Massey algorithm for \mathbb{F}_2 . Several important points to notice:

- Because we are in \mathbb{F}_2 , d' is always equal to 1. The Line 10 is simplified.
- You can represent the polynomials P and Q as lists of binary coefficients, that you can initialize by `[1] + [0]*len(s)` as the list will never be bigger.
- The operation at Line 10 becomes an operation on lists. In my code it's:

```
for i in range(len(P) - (t-m)):
    P[i + t-m] = P[i + t-m] ^ Q[i]
```

What is the complexity of the algorithm? Test your implementation on an LFSR sequence generated by your function `LFSR` of Question 2, and observe that the result is incorrect if the input sequence is too small.

The idea of the algorithm is that the value d computed during the loop is telling us whether the current polynomial P looks good or not. If d is zero, we have nothing to do. If d is not zero, we adjust P so that a recalculation of d would give 0. Thus, at time t , the algorithm determines an LFSR of minimal length that produces the t first values of the sequence.