Cryptanalysis TP2: LFSRs

Introduction to LFSRs

In the following we consider LFSRs on Fy. You may start from the file tp2_code.py.

Question 1. Write a function LFSR_step(P, state) that simulates one step of an
LFSR. It takes as input a retroaction polynomial P € Fy[X] (represented as a list of
bits) and the state S; (represented as a list of bits), and returns the state at time t + 1
and the output at time t.

(Recall that the XOR operator in Python is ~.)

Question 2. Write a function LFSR(P, state, N) that takes a retroaction polynomial,
the initial state Sy and an integer N, and returns the N first elements of the output of
the LFSR of retroaction P, initialized with Sy.

Question 3. Check that the LFSR of length 5 and retroaction polynomial P(X) =1 +
X4 + X5 € Fy[X], initialized by Sy = (0,0,1,0,1), returns a sequence starting with
0,0,1,0,1,0,1,.... What is its period?

Cycles

Question 4. Write a function that takes the initial state Sy of an LFSR and its polyno-
mial P, and returns the set of all different internal states Sy, S1,...,Sr_1 obtained on a
period.

Question 5. Test with P(X) =1+ X*+ X° € Fy[X] and the initial states (0,0,1,0,1),
(0,1,0,0,0), (1,0,1,0,0). What do you notice?

Question 6. Write a function taking as input the retroaction polynomial and returning
all the possible cycles (by making the initial state vary).

Question 7. How many cycles are produced by the LFSR of length 5 and retroaction
polynomial P? Same question with the LFSR of length 4 and polynomials:

o 1+ X2+ X4
e 1+ X+ X2+ X34+ X4
o 1+ X+ X4

The Berlekamp-Massey Algorithm

LFSRs are very fast, they output sequences with very large periods, and good statistical
properties. However they are not enough to make secure stream ciphers: indeed the
sequence generated by an LFSR is predictible.

Question 8. Let (s,)nen be the sequence generated by an LFSR. Let A(s) be its linear
complexity (the degree of the minimal polynomial).

Show that 2A(s) consecutive terms of the sequence are sufficient to characterize s.
More precisely, show that if we know A(s), as well as 2A(s) consecutive terms of s, then
we can compute the minimal polynomial P.

Indication: write the coefficients of P as the unknowns in a linear system.

Question 9. Suppose that we know an upper bound A(s) < {. Deduce an algorithm that
takes s as input and returns A(s), as well as the retroaction polynomial, in time O({%).

Yo

Cryptanalysis TP2: LFSRs

Algorithm 1 Berlekamp-Massey algorithm.

Input: sequence s = (s, ..., s,-1) of elements in F,
Output: A(s) and P, the minimal retroaction polynomial

P(X) <« 1
Q(X) «+ 1
A0
m <+ —1
d <« 1
for t € {0,...,n—1} do
d < s+ 2?21 DiSt—i
if d # 0 then
T(X) «+ P(X)
P(X) + P(X) —d(d)'Q(Xx)Xxt—™
if 2A <t then
A—t+1-A
m <t
Q(X) « T(X)
d <« d
end if
17: end if
18: end for
19: Return A and P(X)

e e e e e e

This is a polynomial algorithm already, but not very efficient in practice. We can do
much better using the Berlekamp-Massey algorithm.

Question 10. Implement the Berlekamp-Massey algorithm for Fy. Several important
points to notice:

e Because we are in Fo, d' is always equal to 1. The Line 10 is simplified.

e You can represent the polynomials P and Q) as lists of binary coefficients, that you
can itialize by [1]1 + [0]*1len(s) as the list will never be bigger.

e The operation at Line 10 becomes an operation on lists. In my code it’s:

for i in range(len(P) - (t-m)):
P[i + t-m] = P[i + t-m] ~ Q[i]

What is the complexity of the algorithm? Test your implementation on an LFSR
sequence generated by your function LFSR of Question 2, and observe that the result is
incorrect if the input sequence is too small.

The idea of the algorithm is that the value d computed during the loop is telling us
whether the current polynomial P looks good or not. If d is zero, we have nothing to do.
If d is not zero, we adjust P so that a recalculation of d would give 0. Thus, at time ¢,
the algorithm determines an LFSR of minimal length that produces the t first values of
the sequence.

