
Cryptanalysis TP1: Attack on the concatenation combiner

Collision Attack on the Concatenation Combiner

In this exercise, we consider Merkle-Damg̊ard hash functions. For simplicity we do not
use any padding (but all of this exercise would apply as well if we used a secure padding
scheme).

pad(M) = M1 M2 M3 M4

Hh0 = IV H
h1

H
h2

H
h3

· · ·

Figure 1: Merkle-Damg̊ard construction.

The concatenation combiner combines the output of two Merkle-Damg̊ard hashes
applied to the same message. These two hash functions F1, F2 use different IVs and
different compression functions f1 and f2. The output of the concatenation combiner is:

F (m0, . . . ,mt−1) = F1(m0, . . . ,mt−1)∥F2(m0, . . . ,mt−1) .

We suppose that the chaining values and the outputs of both functions have n bits each.
Thus the combiner outputs 2n bits. The message blocks will have 2n bits, in order to
facilitate our attacks.

Question 1. Show that by using messages of length n/2 blocks, one can build a 2n/2-
multicollision of F1 in time O

(
n2n/2

)
, i.e., a set of messages xi having all the same

length and the same output chaining value. How much space do you need to store this
multicollision?

Question 2. Show that we can find a collision of F in time O
(
n2n/2

)
.

We use the functions md_hash_1 and md_hash_2 from the file tp1_code.py. Both
of them take as input a list of 64-bit integers (the message blocks) and return a 32-
bit integer. One uses SHA-2 and the other MD5, so they return completely unrelated
outputs. Recall that you can use the function randrange(1 << 64) to output a random
64-bit integer.

It is possible to also access the compression function of, say, md_hash_1, as follows:
h’ = md_hash_1([m], h) where h is the current chaining value, h′ the next one, and m
the message block.

Question 3. Implement the computation of the multicollision of md_hash_1.

Question 4. Implement the previous attack on the concatenation combiner of the two
hash functions: md_hash_1∥md_hash_2. That is, find a pair of messages m1,m2 such
that both hash functions have the same output.

Preimage Attack on the Concatenation Combiner

Question 5. Show that given a target t, we can find a set of O(2n) preimages of t by F1

in time O(2n).

Question 6. Deduce that we can find preimages of the concatenation combiner in time
O(2n).

1/2



Cryptanalysis TP1: Attack on the concatenation combiner

We now use two different MD functions with 20-bit output, md_hash_3 and md_hash_4

(also defined in tp1_code.py).

Question 7. Find a preimage of (0,0).

Question 8 (Bonus question). Go back to the two first MD hashes. Append a third
MD hash, this time using sha1 and 32 bits of output. Find a collision of the triple
concatenation combiner. What is the number of blocks of the colliding messages?

2/2


