
Cryptanalyse TD : variations de Merkle-Damg̊ard

Propriétés de sécurité des fonctions de hachage

Soit h : {0, 1}∗ → {0, 1}n une fonction de hachage que l’on suppose résistante aux collisions.
Soit h′ la fonction suivante :

h′ :


{0, 1}∗ → {0, 1}n+1

x 7→
{
0∥x si |x| = n

1∥h(x) sinon

Question 1. Montrer que h′ est résistante aux collisions.

Solution. Rappelons la définition d’une attaque par collision : ≪ peut-on écrire un algorithme
plus rapide que la borne d’anniversaire qui produise une collision ? ≫

Ici, la seule hypothèse dont nous disposons est que h est résistante aux collisions. Nous
allons donc réduire la résistance aux collisions de h′ à celle de h. Nous faisons la preuve par
contraposition : nous montrons que si h′ n’est pas résistante aux collisions, alors h ne l’est pas
non plus.

Supposons que h′ ne soit pas résistante aux collisions. Il existe alors une attaque par collision,
c’est-à-dire un algorithme A qui produit une collision plus vite que la borne d’anniversaire
générique (2n/2). Supposons que A produise une paire (x, y).

Nous remarquons que h′(x) ne peut pas commencer par 0, car cela impliquerait h′(x) =
0|x = h′(y) = 0|y, ce qui mènerait à une contradiction (nous supposons x ̸= y). Donc h′(x)
commence par 1 et h′(x) = 1|h(x) = h′(y) = 1|h(y), ce qui implique h(x) = h(y). Nous pouvons
utiliser l’algorithme A comme une attaque par collision contre h. Cela conclut la preuve.

Question 2. Montrer que h′ n’est pas résistante aux préimages.

Solution. Remarquons que h n’est pas supposée être résistante aux préimages, mais elle n’est
pas non plus supposée être cassée. Nous ne pouvons simplement rien affirmer concernant sa
résistance aux préimages.

Rappelons la définition d’une attaque par préimage : ≪ un algorithme plus rapide que la
recherche exhaustive, et qui réussit avec une probabilité constante ≫. Cette dernière partie est
importante, car il est acceptable que l’attaque ne réussisse pas pour toutes les cibles possibles.
Vous pouvez voir cela ainsi : lorsque vous attaquez la fonction de hachage, la cible sera en
général choisie aléatoirement, et si l’attaque échoue, vous la relancez simplement.

Concevons donc un tel algorithme. En entrée, on prend une cible t choisie uniformément
au hasard. Si t commence par 0 alors t = 0|t′ et t′ est une préimage valide de t, suivant la
définition de h′. Si t commence par 1, nous échouons simplement. Nous réussissons donc avec
probabilité 1/2 sur des entrées aléatoires, ce qui est suffisant pour revendiquer une attaque.

Variations de Merkle-Damg̊ard

On cherche à concevoir une fonction de hachage sûre basée sur la construction Merkle-
Damg̊ard. Dans la suite de cet exercice, on supposera que les blocs de message sont tous com-
plets. De plus, on utilisera une construction de Merkle-Damg̊ard à deux fonctions de compression
(h, h′), pour laquelle aucun padding n’est nécessaire. Un exemple est représenté sur la figure 1.
Les deux fonctions h, h′ : {0, 1}n×{0, 1}n → {0, 1}n prennent en entrée un bloc de n bits et une
valeur de châınage de n bits, et sont considérées comme des fonctions aléatoires indépendantes.

La complexité en temps des algorithmes sera comptée en évaluations des fonctions h et h′.
Lorsque des algorithmes sont demandés, vous pouvez les écrire sous forme de pseudocode peu
détaillé.

1/4

Cryptanalyse TD : variations de Merkle-Damg̊ard

m1 m2 m3 0

hu0 = IV h
u1

h
u2

h′
u3

Sortie

Figure 1 – Fonction MD typiquement considérée pour cet exercice.

Étant donné une fonction de compression h : {0, 1}n × {0, 1}n → {0, 1}n, l’itération de h
sur les blocs m1, . . . ,mℓ en partant de IV est notée :

h∗(IV,m1, . . . ,mℓ) ,

par exemple :
h∗(IV,m1,m2,m3) = h(h(h(IV,m1),m2),m3) .

Ainsi la fonction Merkle-Damg̊ard complète, notée H, a pour expression :

H(m1, . . . ,mℓ) = h′(h∗(IV,m1, . . . ,mℓ), 0) .

Question 3. On commence avec une taille de bloc (et de châınage) de 128 bits. Quel est le
niveau de sécurité de la fonction H contre les collisions ? (Il n’est pas nécessaire de détailler
l’algorithme d’attaque).

Solution. Seulement 64 bits de sécurité.

Question 4. On modifie maintenant la fonction h′. Elle se comporte toujours comme une
fonction aléatoire, mais sa sortie est étendue à 256 bits :

h′ : {0, 1}128 × {0, 1}128 → {0, 1}256

Quel est le niveau de sécurité de la nouvelle fonction H contre les collisions ? Justifiez cette
réponse par un algorithme d’attaque simple dont vous estimerez la complexité.

Solution. Trouver une paire m,m′ en collision juste après l’IV : h(IV,m) = h(IV,m′) := c
en utilisant votre algorithme de recherche de collisions préféré. Dans les deux cas la sortie est
h′(0, c) donc c’est la même.

Question 5. On utilise maintenant deux fonctions de compression h, h′ : {0, 1}256×{0, 1}256 →
{0, 1}256. On définit une nouvelle construction basée sur Merkle-Damg̊ard, donnée par l’algo-
rithme suivant :

Entrée : ℓ blocs de message (m1, . . . ,mℓ) de 512 bits chacun
1. Séparer les blocs en moitiés comme suit : m′

1∥m′′
1 = m1, . . . ,m

′
ℓ∥m′′

ℓ = mℓ

2. Calculer t0 = h′(h∗(0,m′
1, . . . ,m

′
ℓ), 0)

3. Calculer t1 = h′(h∗(1,m′′
1, . . . ,m

′′
ℓ), 0)

4. Renvoyer t0 ⊕ t1

Donnez un algorithme d’attaque en préimage contre cette fonction et estimez sa complexité.
Est-elle plus ou moins sûre qu’une fonction Merkle-Damg̊ard classique à 256 bits de sortie ?

Solution. L’algorithme d’attaque : trouver une collision entre t0 et t1. Formellement, on définit
deux fonctions f(m′

1, . . . ,m
′
ℓ) := h′(h∗(0,m′

1, . . . ,m
′
ℓ), 0) et g(m

′′
1, . . . ,m

′′
ℓ) := h′(h∗(1,m′′

1, . . . ,m
′′
ℓ), 0)

2/4

Cryptanalyse TD : variations de Merkle-Damg̊ard

et on cherche une paire de ℓ-tuples de blocs qui donne la même sortie pour f et g. C’est le même
coût que la collision pour une fonction seule 1.

La fonction a n/2 bits de sécurité en préimage. C’est moins sûr qu’un Merkle-Damgard
classique. En effet, MD classique a n bits de sécurité en préimage (contrairement à la seconde
préimage). On pourrait aussi raisonner sur les secondes préimages : on a vu en cours une attaque
en seconde préimage sur MD, mais elle n’atteint la complexité 2n/2 que pour des messages très
longs, ici l’attaque est plus puissante puisqu’on est sur des messages courts.

Dans la suite de cet exercice, on définit une fonction de Merkle-Damg̊ard avec check-
sum, de la manière suivante :

HC(m1, . . . ,mℓ) = h′

(
h∗(0,m1, . . . ,mℓ),

ℓ⊕
i=1

mi

)

Le dernier bloc, précedemment 0, est maintenant le XOR de tous les blocs de message
(la checksum). Blocs et valeurs de châınages sont de taille n, et nous nous intéressons
exclusivement à des complexités asymptotiques en n.
Nous allons montrer une attaque en seconde préimage sur cette fonction.

Question 6. La première étape est de construire une multicollision à 2n blocs, c’est-à-dire une
série de 2n paires de blocs (m0

i ,m
1
i) tels que :

∃U,∀b1, . . . , b2n, h∗(0,mb1
1 , . . . ,mb2n

2n)) = U

Donner un algorithme pour cette étape, et sa complexité asymptotique.

Solution. Complexité : O
(
n2n/2

)
.

Algorithme : c’est la multicollision vue en cours. Un pseudocode très basique suffit : initialiser
c = 0. Itérer 2n fois : trouver une paire m,m′ telle que h(c,m) = h(c,m′). Mettre à jour
c← h(c,m). Renvoyer les 2n paires.

Le plus important pour cet algorithme est que chaque nouvelle collision est calculée à partir
de la valeur de châınage actuelle c, qu’on doit mettre à jour.

Nous admettons le résultat suivant.
Étant donnée une cible t ∈ {0, 1}n quelconque, il existe (avec très grande probabilité)
un choix de blocs (b1, . . . , b2n) dans les paires de la multicollision, tel que :

2n⊕
i=1

mbi
i = t .

De plus ce choix peut être calculé en temps O
(
n3
)
à l’aide d’une résolution de système

linéaire.

Question 7. Soit P = (p1, . . . , p2k) un message de longueur 2k. Soient :

u0 := IV, u1 := h(u0, p1), . . . , u2k := h(u2k−1, p2k),

les valeurs de châınage dans la fonction. Donner un algorithme simple pour trouver un bloc m∗

tel que h(U,m∗) ∈ {u1, . . . , u2k}, et donner sa complexité asymptotique.

1. Pourquoi ? Méthode simple : définissez une seule fonction à n bits de sortie F telle que F (0∥x) = f(x) et
F (1∥x) = g(x), cherchez une collision de F , recommencez jusqu’à ce que (par hasard) les deux éléments de la
paire aient des premiers bits distincts. Je n’aurais pas demandé qu’on me donne ces détails en examen.

3/4

Cryptanalyse TD : variations de Merkle-Damg̊ard

Solution. O
(
2n−k

)
par recherche exhaustive, comme l’attaque en seconde préimage sur MD.

Question 8. Soit m1, . . . ,m2n,m
∗ un message de 2n+ 1 blocs tel que pour un certain i :

• h∗(IV,m1, . . . ,m2n,m
∗) = h∗(IV, p1, . . . , pi)

• m1 ⊕m2 ⊕ . . .⊕m2n ⊕m∗ = p1 ⊕ . . .⊕ pi

Montrer que m1, . . . ,m2n,m
∗, pi+1, . . . , p2k est une seconde préimage du message P originel.

Solution. Faire le calcul : il s’agit de montrer que :

HC(p1, . . . , p2k) = HC(m1, . . . ,m2n,m
∗, pi+1, . . . , p2k)

h′(h∗(0,m1, . . . ,m2n,m
∗, pi+1, . . . , p2k),m1 ⊕ . . .⊕m2n ⊕m∗ ⊕ pi+1 . . .⊕ p2k)

= h′(h∗(0, p1, . . . , p2k),
⊕

pi)

On va donc montrer deux égalités. Égalité de la dernière valeur de châınage :

h∗(0,m1, . . . ,m2n,m
∗, pi+1, . . . , p2k) = h∗(0, p1, . . . , p2k)

venant du fait que par définition de m∗ :

h∗(IV,m1, . . . ,m2n,m
∗) = h∗(IV, p1, . . . , pi)

et qu’on rajoute ensuite les blocs pi+1, . . . , p2k . Deuxième égalité, celle de la checksum, venant
de :

m1 ⊕m2 ⊕ . . .⊕m2n ⊕m∗ = p1 ⊕ . . .⊕ pi

=⇒ m1 ⊕ . . .⊕m2n ⊕m∗ ⊕ pi+1 . . .⊕ p2k =
⊕

pi .

Question 9. En déduire une attaque en seconde préimage sur Merkle-Damg̊ard avec checksum,
et donner sa complexité.

Solution. Il faut mettre ensemble les questions précédentes, et le plus important est d’avoir le
bon ordre dans les opérations. Voici les étapes de l’attaque :

1. On construit la multicollision, on récupère la valeur finale U ;
2. On calcule m∗ (qui ne dépend que de U et des pi) ;
3. On trouve un message m1, . . . ,m2n dans la multicollision qui a la bonne valeur pour la

checksum.

La complexité est 2n−k+n2n/2+n3 (le dernier facteur étant négligeable), comme une attaque
en seconde préimage sur MD standard.

4/4

