Cryptanalysis Part II: Cryptanalysis of Hash Constructions

André Schrottenloher

Inria Rennes Team CAPSULE

- Introduction
- 2 Length Extension on Merkle-Damgård
- 3 Second Preimage on Merkle-Damgård
- **4** Nostradamus Attack

Introduction

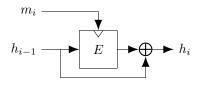
How to transform a block cipher into a compression function

There are several **secure modes**, for example Davies-Meyer:

How to transform a block cipher into a compression function

There are several **secure modes**, for example Davies-Meyer:

- Use key as message block input $m_i \in \{0,1\}^m$
- ullet Use block as chaining value input $h_i \in \{0,1\}^n$
- XOR block to the output to make it non-invertible



$$h_i = h_{i-1} \oplus E_{m_i}(h_{i-1})$$

If the block cipher is ideal, the DM-based compression function is secure.

Note that...

...it is also **very easy** to produce insecure modes, for example:

$$f(h_{i-1},m_i)=E_{m_i\oplus h_{i-1}}(m_i\oplus h_{i-1})\oplus m_i$$

 \implies one can produce preimages.

Note that...

...it is also **very easy** to produce insecure modes, for example:

$$f(h_{i-1},m_i)=E_{m_i\oplus h_{i-1}}(m_i\oplus h_{i-1})\oplus m_i$$

⇒ one can produce preimages.

Attack

• Notice that if $m_i \oplus h_{i-1} = c$, then:

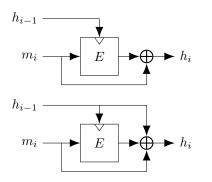
$$f(h_{i-1},m_i)=E_c(c)\oplus m_i$$

• Fix $m_i = E_c(c)$, choose $h_{i-1} = E_c(c) \oplus c$, then:

$$f(h_{i-1},m_i)=0$$

Other typical modes

- Matyas-Meyer-Oseas (MMO) : $h_i = m_i \oplus E_{h_{i-1}}(m_i)$
- Miyaguchi-Preneel (MP) : $h_i = h_{i-1} \oplus m_i \oplus E_{h_{i-1}}(m_i)$



Merkle-Dåmgard

Let
$$H:\underbrace{\{0,1\}^n}_{\text{Chaining value}} \times \underbrace{\{0,1\}^m}_{\text{Message block}} \to \{0,1\}^n$$

$$pad(M) = \underbrace{M_1 \qquad M_2 \qquad M_3 \qquad M_4}_{h_0 = IV} + \underbrace{H}_{h_1} + \underbrace{H}_{h_2} + \underbrace{H}_{h_3} + \cdots$$

Fact

If H is collision-resistant, and pad is an appropriate padding scheme, $\mathcal{H} = MD[H]$ is collision-resistant.

Padding

In order to be secure, the padding scheme pad(M) needs to satisfy:

- M is a prefix of pad(M)
- If $|M_1| = |M_2|$ then $|pad(M_1)| = |pad(M_2)|$
- If $|M_1| \neq |M_2|$ then the last block of $pad(M_1)$ and $pad(M_2)$ differ

 \implies we encode the **length** of M in the padding (which goes in the last block)

Recap

Collisions

From a given chaining value h, find two blocks x, x' such that H(h, x) = H(h, x'): $\mathcal{O}(2^{n/2})$.

Preimage

From a given chaining value h and target t, find a block x such that H(h,x)=t: $\mathcal{O}(2^n)$.

Multi-target preimage

From a given chaining value h and set of targets T, $|T| = 2^t$, find a block x such that $H(h,x) \in T$: $\mathcal{O}(2^{n-t})$.

 \implies all of this assumes nothing of the function H.

Length Extension on Merkle-Damgård

Length extension attack

Attack

Given $\mathcal{H}(x)$, where x is unknown, obtain $\mathcal{H}(x||pad(x)||y)$ for arbitrary suffix y.

Length extension attack

Attack

Given $\mathcal{H}(x)$, where x is unknown, obtain $\mathcal{H}(x||pad(x)||y)$ for arbitrary suffix y.

- We know the final state after absorbing $x \| \operatorname{pad}(x)$
- Restart from this state and compute the next chaining values ourselves (incl. padding)

Avoiding this

Solution

Use a different compression function for the last call.

Second Preimage on Merkle-Damgård

Second preimage attack

Consider a very long message $x = x_0 || x_1 ... || x_{2^k-1}$, with 2^k chaining values.

Objective

Given x, $\mathcal{H}(x)$, find $y \neq x$ such that $\mathcal{H}(y) = \mathcal{H}(x)$.

If the padding did not **depend on the message length**, this would be easy:

Second preimage attack

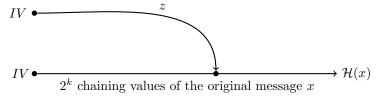
Consider a very long message $x = x_0 || x_1 ... || x_{2^k-1}$, with 2^k chaining values.

Objective

Given x, $\mathcal{H}(x)$, find $y \neq x$ such that $\mathcal{H}(y) = \mathcal{H}(x)$.

If the padding did not **depend on the message length**, this would be easy:

- Find z such that $\mathcal{H}(z)$ falls on a chaining value (time $\mathcal{O}(2^{n-k})$)
- Concatenate z with the rest of the message



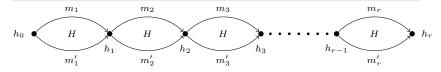
Problem: the two messages have different lengths.

Interlude: multicollisions in MD

We can compute a 2^r -collision in time $\mathcal{O}(r2^{n/2})$.

Interlude: multicollisions in MD

We can compute a 2^r -collision in time $\mathcal{O}(r2^{n/2})$.



- Start from a chaining value h_0
- Find a collision from h_0 : let h_1 be the output
- Find a collision from h_1 : let h_2 be the output
- ...

Every choice of message $(m_1 \text{ or } m_1') \| (m_2 \text{ or } m_2') \| \dots \| (m_r \text{ or } m_r') \text{ leads to the same value } h_r$.

How much space do we need to store it?

Expandable message

- So far all the messages in the multicollision have the same length.
- New idea: use messages of different block lengths.

Expandable message

- So far all the messages in the multicollision have the same length.
- New idea: use messages of different block lengths.

$$2^{1} + 1 \ bl. \ 2^{2} + 1 \ bl. \ 2^{3} + 1 \ bl. \ 2^{4} + 1 \ bl. \ 2^{5} + 1 \ bl. \ 2^{6} + 1 \ bl. \ 2^{7} + 1 \ bl.$$

$$1V \bullet m_{1}/m_{1}/m_{2}/m_{2}/m_{2}/m_{3}/m_{3}/m_{3}/m_{4}/m_{4}/m_{4}/m_{5}/m_{5}/m_{5}/m_{6}/m_{6}/m_{6}/m_{7}$$

- First collision: 1 block vs. $2^1 + 1$ block
- Second collision: 1 block vs. $2^2 + 1$ block
- ...

Theorem

For any $r \leq j < r+2^r$, we can produce a message (by choosing m_i or m_i' blocks) with output h_r and length i blocks. The structure is constructed in time $\widetilde{\mathcal{O}}(2^r+2^{n/2})$.

⇒ multicollision with length control.

Time to construct the EM structure

Naively: we need r collisions, the last one between a message of 2^r blocks and a message of 1 block.

$$\implies \mathcal{O}(2^{r+n/2})$$
 complexity

Time to construct the EM structure

Naively: we need r collisions, the last one between a message of 2^r blocks and a message of 1 block.

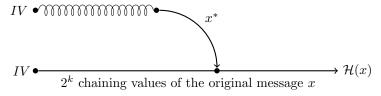
$$\implies \mathcal{O}(2^{r+n/2})$$
 complexity

Cleverly

- For each collision of 1 block vs. $2^i + 1$ block, we fix the 2^i first block to dummy values.
- Now the total amount of compression function calls is:

$$1+\ldots+2^r+\mathcal{O}\left(r2^{n/2}\right)=\widetilde{\mathcal{O}}\left(2^r+2^{n/2}\right)$$

Second preimage attack (ctd.)



- 1. construct a 2^k -expandable message: $\widetilde{\mathcal{O}}(2^k+2^{n/2})$ with output h_k
- 2. find x^* such that $H(h_k, x^*)$ is one of the chaining values: $\mathcal{O}(2^{n-k})$
- 3. select in the EM the message having the right length
- Total: $\mathcal{O}(2^k + 2^{n/2}) + \mathcal{O}(2^{n-k})$
- Corresponding message has 2^k blocks (optimal for k = n/2, but long message)

Avoiding this

Solution

- Increase the internal state (wide-pipe construction): instead of n bits, have 2n bits
- At the end, compress the 2n bits into n bits (typically: truncate)

Nostradamus Attack

Nostradamus attack scenario

Nostradamus says: "I can predict the lottery output".

- Nostradamus publishes a hash output h
- After the lottery outputs x, Nostradamus shows that $h = \mathcal{H}(x||s)$ where s is an arbitrary (garbage) suffix

Nostradamus concludes: "I have correctly predicted x".

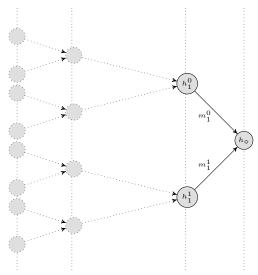
Chosen target forced prefix pre-image resistance:

Choose h freely. In a second step, given x, find s such that $h = \mathcal{H}(x||s)$.

For Merkle-Damgård, CTFP is easier than preimage.

The diamond structure

Find many messages leading to the same hash value.



The diamond structure (ctd.)

- 1. Start from 2^k random chaining values.
- 2. Find message pairs which map the 2^k chaining values to 2^{k-1} (many collisions)
- 3. Find message pairs to map the 2^{k-1} values to 2^{k-2}
- 4. ...

Naive complexity: $\mathcal{O}(2^k \times 2^{n/2})$.

The diamond structure (ctd.)

- 1. Start from 2^k random chaining values.
- 2. Find message pairs which map the 2^k chaining values to 2^{k-1} (many collisions)
- 3. Find message pairs to map the 2^{k-1} values to 2^{k-2}
- 4. ...

Naive complexity: $\mathcal{O}(2^k \times 2^{n/2})$.

Better complexity:

- At each level, select $2^{n/2+k/2}$ extensions $(2^{n/2-k/2}$ per current value).
- Expect $(2^{n/2+k/2})^2 2^{-n} = 2^k$ collisions (enough to form all collision pairs).

Result: $\widetilde{\mathcal{O}}(2^{k/2+n/2})$.

The herding attack

- 1. Nostradamus creates a diamond structure, publishes the output h
- 2. On challenge x, Nostradamus finds a message m such that h(x, m) is in the first level of the diamond

Complexity:
$$2^{n/2+k/2} + 2^{n-k}$$
, balanced with $k = n/3 \implies \mathcal{O}(2^{2n/3})$.

Conclusion

- All of these attacks are generic: they are limitations from the constructions, not the primitives.
- Basic Merkle-Damgård has many hurdles: exercise caution
- Modern hash functions (SHA-3) are more often built using **Sponges** than MD (larger internal states, tighter security)