
Introduction à la Cryptographie TD 2 : Cryptographie à clé publique - RSA

Algorithme p-1 de Pollard

Nous avons vu en cours que la factorisation d’entiers RSA quelconques est un problème
difficile, néanmoins solvable en temps subexponentiel à l’aide des algorithmes de crible. Toutefois,
si l’entier RSA est mal généré, il existe des cas plus faciles.

Soit N = PQ un module RSA où P et Q sont premiers et de même taille. Soit B une borne
à choisir plus tard. L’algorithme P − 1 de Pollard s’exécute selon les étapes suivantes :

1. Calculer M =
∏

premiers q≤B q⌊logq B⌋ (i.e., calculer le produit des puissances de nombres
premiers inférieures à B)

2. Sélectionner a au hasard premier avec N
3. Calculer G = GCD(aM − 1, N)
4. Si G < N renvoyer G ; sinon renvoyer ≪ échec ≫

Question 1. On suppose que P −1 est B-ultrafriable (B-powersmooth), c’est-à-dire que toutes
les puissances de nombres premiers pν dans sa décomposition en facteurs premiers sont plus
petites que B. Montrer que M est multiple de P − 1.

Question 2. On suppose aussi que Q n’est pas B-powersmooth. Montrer que l’algorithme
renvoie P avec bonne probabilité.

Question 3. Donner une borne sur la complexité de l’algorithme, à B fixé, puis à B variable.

Lors de la génération de ≪ bons ≫ nombres premiers on impose ainsi que P − 1 ait au
moins un ≪ grand ≫ facteur premier. Toutefois, la méthode de factorisation ECM (basée sur les
courbes elliptiques) a rendu l’algorithme P − 1 obsolète, et fonctionne aussi bien lorsque P − 1
est powersmooth ou ne l’est pas.

Dans la méthode ECM, on utilise en effet le groupe des points d’une courbe elliptique quel-
conque définie sur ZN . Ce groupe est d’ordre variable, mais proche de N . Cette variabilité
permet de tomber avec forte probabilité sur un ordre friable (smooth), contrairement à l’algo-
rithme P − 1 dans lequel le choix du groupe est contraint. On calcule donc les multiples d’un
point de la courbe jusqu’à tomber sur un élément non-inversible, qui doit apparâıtre assez tôt
à cause du petit théorème de Fermat. Cet algorithme est de complexité subexponentielle.

Autour de RSA

On rappelle le schéma de chiffrement RSA basique.

KeyGen(1n) choisir un module N qui est le produit de deux premiers de n bits, avec deux
entiers e et d tels que ed = 1 mod ϕ(N). pk = (N, e) ; sk = (N, d)
Enc(m ∈ Z∗

N , (N, e)) renvoie c = me (mod N)
Dec(c ∈ Z∗

N , (N, d)) renvoie m = cd (mod N)

Nous avons déjà vu que ce RSA basique n’est pas IND-CPA. Dans cet exercice nous explorons
quelques autres attaques sur ce schéma.

Question 4. Soit N = PQ un produit de deux premiers distincts. Montrer que si ϕ(N) et N
sont connus, alors on peut retrouver p, q en temps polynomial.

Question 5. Montrer que si m ∈ [0, N1/e] alors on peut facilement décrypter (= retrouver le
message sans connâıtre la clé privée, par opposition à déchiffrer).

Question 6. Une racine de l’unité modulo N est un entier x tel que x2 = 1 mod N .

1. Combien y a-t-il de racines de l’unité modulo N ?
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2. Supposons que l’on connaisse (N, e, d) (mais pas la factorisation de N). Montrer qu’on
peut calculer une racine de l’unité modulo N . On admet qu’elle est non-triviale avec bonne
probabilité.

3. En déduire qu’on peut factoriser N .

Question 7. Fixons un module N et supposons qu’un serveur centralisé donne aux utilisateurs
des paires (e1, d1) et (e2, d2) formant des clés RSA valides (exposants privés et publics). Pourquoi
est-ce une mauvaise idée ?

Question 8. Soit (N1, e), . . . , (Ne, e) les clé publiques de e utilisateurs différents. Un même
message m est chiffré e fois, avec chacune de ces clés publiques. Montrer qu’un attaquant peut
retrouver m à partir de l’observation des chiffrés ci := Enc(m, (Ni, e)).

Question 9. On essaie maintenant d’éviter l’attaque de la question précédente. On a m <
√
Ni

mais on force chaque utilisateur à utiliser une modification de son message m, sous la forme
d’un décalage δi connu. L’attaquant n’observe donc plus que les chiffrés de m+ δ1, m+ δ2, . . .,
m+ δe.

On admet le théorème de Coppersmith :

Theorem 1. Soit f ∈ Z[X] un polynôme unitaire de degré e et N un entier. S’il existe une
racine x0 de f modulo N telle que |x0| ≤ N1/e−ε, alors il est possible de retrouver x0 en temps
polynomial en logN et 1/ε.

Montrer comment retrouver m.

Fonction Indicatrice d’Euler

On rappelle que l’indicatrice d’Euler est définie par ϕ(N) = |Z∗
N |, l’ordre du groupe Z∗

N . Dit
autrement, c’est le nombre d’entiers de [1;N ] qui sont premiers avec N .

Question 10. Soit p un nombre premier, montrer que ϕ(p) = p− 1.

Question 11. Soient p, q premiers entre eux. Montrer que ϕ(qp) = ϕ(p)ϕ(q).

Question 12. Soit p un premier et e ≥ 1 un entier. Montrer que ϕ(pe) = pe−1(p− 1).

Question 13. Soit N =
∏

i p
ci
i où les pi sont des premiers distincts, ci ≥ 1. Montrer que

ϕ(N) =
∏

i p
ci−1
i (pi − 1) ;

2/2


