Introduction a la Cryptographie TD 2 : Cryptographie a clé publique - RSA

Algorithme p-1 de Pollard

Nous avons vu en cours que la factorisation d’entiers RSA quelconques est un probléeme
difficile, néanmoins solvable en temps subexponentiel a ’aide des algorithmes de crible. Toutefois,
si 'entier RSA est mal généré, il existe des cas plus faciles.

Soit N = PQ un module RSA ou P et ) sont premiers et de méme taille. Soit B une borne
a choisir plus tard. L’algorithme P — 1 de Pollard s’exécute selon les étapes suivantes :

1. Caleuler M = [ cmiers g< 4
premiers inférieures a B)

2. Sélectionner a au hasard premier avec N

3. Calculer G = GCD(a™ — 1, N)

4. Si G < N renvoyer G ; sinon renvoyer < échec >

[log, B] (i.e., calculer le produit des puissances de nombres

Question 1. On suppose que P —1 est B-ultrafriable (B-powersmooth), c¢’est-a-dire que toutes
les puissances de nombres premiers p¥ dans sa décomposition en facteurs premiers sont plus
petites que B. Montrer que M est multiple de P — 1.

Question 2. On suppose aussi que QQ n’est pas B-powersmooth. Montrer que [’algorithme
renvoie P avec bonne probabilité.

Question 3. Donner une borne sur la complexité de lalgorithme, a B fixé, puis a B variable.

Lors de la génération de <« bons » nombres premiers on impose ainsi que P — 1 ait au
moins un < grand > facteur premier. Toutefois, la méthode de factorisation ECM (basée sur les
courbes elliptiques) a rendu I’algorithme P — 1 obsoléte, et fonctionne aussi bien lorsque P — 1
est powersmooth ou ne l’est pas.

Dans la méthode ECM, on utilise en effet le groupe des points d’une courbe elliptique quel-
conque définie sur Zy. Ce groupe est d’ordre variable, mais proche de N. Cette variabilité
permet de tomber avec forte probabilité sur un ordre friable (smooth), contrairement & ’algo-
rithme P — 1 dans lequel le choix du groupe est contraint. On calcule donc les multiples d’un
point de la courbe jusqu’a tomber sur un élément non-inversible, qui doit apparaitre assez tot
a cause du petit théoreme de Fermat. Cet algorithme est de complexité subexponentielle.

Autour de RSA
On rappelle le schéma de chiffrement RSA basique.
KeyGen(1™) choisir un module N qui est le produit de deux premiers de n bits, avec deux
entiers e et d tels que ed =1 mod ¢(N). pk = (N, e); sk = (N,d)

Enc(m € Z%,, (N,e)) renvoie ¢ = m® (mod N)
Dec(c € ZY, (N, d)) renvoie m = ¢? (mod N)

Nous avons déja vu que ce RSA basique n’est pas IND-CPA. Dans cet exercice nous explorons
quelques autres attaques sur ce schéma.

Question 4. Soit N = PQ un produit de deux premiers distincts. Montrer que si ¢(N) et N
sont connus, alors on peut retrouver p,q en temps polynomial.

Question 5. Montrer que si m € [0, Nl/e] alors on peut facilement décrypter (= retrouver le
message sans connaitre la clé privée, par opposition a déchiffrer).

Question 6. Une racine de I'unité modulo N est un entier x tel que 2> =1 mod N.

1. Combien y a-t-il de racines de l'unité modulo N ¢
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2. Supposons que l'on connaisse (N,e,d) (mais pas la factorisation de N ). Montrer qu’on
peut calculer une racine de l'unité modulo N. On admet qu’elle est non-triviale avec bonne
probabilité.

3. En déduire qu’on peut factoriser N.

Question 7. Fizons un module N et supposons qu’un serveur centralisé donne aux utilisateurs
des paires (e1,dy) et (e2,ds) formant des clés RSA valides (exposants privés et publics). Pourquoi
est-ce une mauvaise idée ?

Question 8. Soit (Nyi,e),...,(Ne,e) les clé publiques de e utilisateurs différents. Un méme
message m est chiffré e fois, avec chacune de ces clés publiques. Montrer qu’un attaquant peut
retrouver m a partir de l’observation des chiffrés ¢; :== Enc(m, (Nj,e)).

Question 9. On essaie maintenant d’éviter l’attaque de la question précédente. On a m < \/N;
mais on force chaque utilisateur a utiliser une modification de son message m, sous la forme
d’un décalage §; connu. L’attaquant n’observe donc plus que les chiffrés de m+ 61, m+ da, ...,
m + de.

On admet le théoréme de Coppersmith :

Theorem 1. Soit f € Z[X] un polynéme unitaire de degré e et N un entier. S’il existe une
racine xo de f modulo N telle que |xg| < NY/e=¢ qlors il est possible de retrouver xo en temps
polynomial en log N et 1/e.

Montrer comment retrouver m.

Fonction Indicatrice d’Euler

On rappelle que l'indicatrice d’Euler est définie par ¢(N) = |Z}|, 'ordre du groupe Z},. Dit
autrement, c’est le nombre d’entiers de [1; N] qui sont premiers avec N.

Question 10. Soit p un nombre premier, montrer que ¢(p) =p — 1.
Question 11. Soient p,q premiers entre eux. Montrer que ¢(qp) = ¢(p)p(q).
Question 12. Soit p un premier et e > 1 un entier. Montrer que ¢(p®) = p*1(p — 1).

Question 13. Soit N = [[,pj* ou les p; sont des premiers distincts, ¢; > 1. Montrer que

O(N) =TL;p5 ' (pi — 1) ;



