
Introduction à la Cryptographie TD 1 – définir la sécurité

Distance Statistique

On rappelle que la distance statistique entre deux variables aléatoires discrètes sur un espace
dénombrable A est définie par :

∆(X,Y ) =
1

2

∑
a∈A
|Pr [X = a]− Pr [Y = a]| .

Question 1. Soit X et Y deux variables aléatoires à valeurs dans un ensemble A. Montrer que
pour toute fonction (potentiellement randomisée) f de domaine A, à valeurs dans un ensemble
B, ∆(f(X), f(Y )) ≤ ∆(X,Y ).

Question 2. En déduire que l’avantage de tout adversaire A pour distinguer entre X et Y en
une requête est inférieur à ∆(X,Y ).

Question 3. Soit (X1, . . . , Xk) et (Y1, . . . , Yk) deux listes de variables aléatoires totalement
indépendantes. Montrer que :

∆((Xi)i, (Yi)i) ≤
k∑

i=1

∆(Xi, Yi) . (1)

Question 4. Montrer que si ∆(X,Y ) = negl(n), les distributions X et Y sont calculatoire-
ment indistinguables. On supposera pour cela qu’un adversaire s’exécutant en temps t effectue
exactement t requêtes indépendantes à la distribution.

Question 5 (Bonus). Comment gérer le cas d’un adversaire s’exécutant en temps poly(n),
mais faisant un nombre variable de requêtes ?

Théorème de Shannon

Le but de cet exercice est de prouver le résultat suivant de Shannon.

Theorem 1. Soit KeyGen,Enc,Dec un chiffrement symétrique tel que |M| = |C| = |K|. Le
schéma est parfaitement sûr si et seulement si :

1. Toute clé k ∈ K est choisie avec probabilité 1/|K| par KeyGen
2. Pour tout m ∈M et tout c ∈ C, il existe une unique clé k ∈ K telle que Enc(m, k) = c.

D’abord, nous justifions que l’hypothèse faite sur les espaces est raisonnable.

Question 6. On rappelle la définition de la sécurité parfaite : pour toute variable aléatoire M ,
m et c :

Pr [M = m|Enc(KeyGen,M) = c] = Pr [M = m] .

Montrer que si le chiffrement est correct, on a |C| ≥ |M| ; et que si le chiffrement est
parfaitement sûr, on a |K| ≥ |C|.

On va utiliser la définition suivante de la sécurité parfaite :

Un chiffrement symétrique est parfaitement sûr si, pour tous m1,m2, c ∈ M×
M× C :

Pr
k←KeyGen

[Enc(k,m1) = c] = Pr
k←KeyGen

[Enc(k,m2) = c] . (2)

Question 7. Montrer l’équivalence avec l’autre définition.

Question 8. Montrer que les conditions 1. et 2. sont suffisantes pour la sécurité parfaite.

Question 9. Montrer le sens inverse de la preuve.
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Chiffrement de Vigenère

Le chiffrement de Vigenère sur un alphabet fini strictement ordonné Σ est une version relaxée
et généralisée du OTP, où la clé peut être plus petite que les messages considérés, et on utilise
l’addition modulaire au lieu du XOR (qui est l’addition modulo 2). Pour chiffrer / déchiffrer,
on répète la clé (abc→ abcabcabc . . .) pour obtenir une clé aussi longue que le message / chiffré,
et on ajoute (modulairement) la clé au message / chiffré, caractère par caractère.

Question 10. Définir formellement le schéma.

Nous considérons le jeu de sécurité suivant sur un schéma de chiffrement Π avec un adversaire
A, noté GEAV .

1. A choisit deux messages m0,m1 de P
2. La clé k est générée par KeyGen, un bit b←↩ U(0, 1) est choisi
3. c = Enc(mb, k) est donné à A
4. A renvoie un bit b′

La sortie du jeu, notée GEAV (A, n) est ⊤ si b = b′ et ⊥ sinon. On peut donc remarquer que
GEAV (A, n) est une variable aléatoire à valeurs dans {⊤,⊥}.

Formellement :

Definition 1 (Sécurité EAV). Un schéma de chiffrement symétrique est EAV (secure against ea-
vesdropping) si pour tout adversaire PPTA son avantage AdvEAV (A) = |Pr

[
GEAV (A, n)← ⊤

]
−

1/2| est négligeable en n. Le jeu de sécurité est donné par :

1. (m0,m1) ∈M2 ← A(1n)
2. k ← KeyGen(1n), b←↩ U(0, 1)
3. b′ ← A(Enc(k,mb))
4. Si b = b′ alors ⊤ sinon ⊥

Dans la suite, le chiffrement de Vigenère est noté Π, et l’alphabet latin Σ.

Question 11. Montrer qu’un adversaire A participant au jeu EAV peut retrouver la clé k.

Question 12. Montrer que le chiffrement de Vigenère n’est pas EAV-sûr.
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