In the previous lecture

e Definition of a (perfectly secure) symmetric cryptosystem (but
how do you transmit the key?)

e The one-time pad, Shannon’s theorem

e Definitions of an efficient adversary, and indistinguishability notions

1/30

Introduction to Cryptography
Part IlI: Public-Key Encryption — RSA

André Schrottenloher

Inria Rennes
Team CAPSULE

v 4

"‘- -‘\
7 H0OK
W N
CAPSULE

© Public-Key Encryption

© Prime Numbers and Factoring

© Textbook RSA

@ Padded RSA

Public-Key Encryption

Asymmetric encryption

A PKE scheme is a triple of PPT algorithms KeyGen, Enc, Dec:

KeyGen: 1" +— sk, pk
Enc: m, pk — C
Dec : c, sk — m

such that ¥Ym, Dec(sk, (Enc(pk, m), m)) = m.

sk, pk = KeyGen(1") ok

¢ = Enc(m, pk)

m = Dec(c, sk)

Color code: not secret, secret, no color = public parameter.
5/30

Public-Key Encryption

Security of PKE

e "The adversary cannot learn anything on the ciphertext from the
plaintext” = perfect security (One-time Pad).

e By restricting to PPT adversaries we get the notion of semantic
security. However it's hard to prove / use in practice.

e Instead we use ciphertext indistinguishability, which is equivalent
and easier to use.

6/30

Public-Key Encryption

IND-CPA

The IND-CPA security game for PKE is defined as follows.
e Initialization : C chooses b <= U(0,1) and keys
(pk, sk) <— KeyGen(1"), sends pk to A
e Find stage : A chooses messages mg, m; and sends to C, who
returns ¢c* = Enc(pk, mp) (the challenge ciphertext
e Guess stage : A computes b’ and wins the game if b= b'.

' <

Choose b+ U(0,1)

Choose (pk, sk) + KeyGen(1") ok

mo, my
c* = Enc(pk, mp)

Return b’

7/30

Public-Key Encryption

IND-CPA (ctd.)

The advantage of A is:

AdvePA(A) =

Pr[A wins] — é‘ .

If the advantage of any PPT adversary is negligible, then the cipher is
said to be IND-CPA secure.

8/30

Public-Key Encryption

IND-CPA (ctd.)

The advantage of A is:
AdvA(A) = ‘Pr[.A wins| — ;‘ .

If the advantage of any PPT adversary is negligible, then the cipher is
said to be IND-CPA secure.

Note that:

e The adversary may encrypt at will during the game (since they have
the public key) = “chosen-plaintext”

e The encryption must be probabilistic, otherwise there is a trivial
attack

8/30

Public-Key Encryption

IND-CCA

e IND-CCA is a stronger notion: IND-CPA + decryption queries.
e Decryption queries should not allow the adversary to win trivially
(e.g., decrypt c*)

9/30

Public-Key Encryption

IND-CCA

e IND-CCA is a stronger notion: IND-CPA + decryption queries.
e Decryption queries should not allow the adversary to win trivially
(e.g., decrypt c*)

The IND-CCA security game is defined like the IND-CPA game, during
which A can additionally perform decryption queries. They are
answered as follows:

e A chooses a ciphertext ¢ and sends ¢ to C

o If ¢ # c¢*, C returns Dec(sk, c)

e Otherwise C returns L

9/30

Public-Key Encryption

IND-CCA (ctd.)

There are two variants:

e IND-CCAL1 (“non-adaptive”’): queries only in the “find stage”
(before c¢* is known)
e IND-CCA2 (“adaptive”): queries at any point

The advantage of the adversary is defined by:

AdvEA(A) =

Pr[.A Wins] — ;' .

If the advantage of any PPT adversary is negligible, then the cipher is
said to be IND-CCA(1,2) secure.

10/30

Prime Numbers and Factoring

Prime numbers and how to find them

Prime number theorem
There are O(2"/n) prime numbers with n bits.

— if you select a random n-bit integer, it's prime with probability
O(1/n).

Fermat'’s little theorem
If p is prime, for any a < p, a?~! =1 (mod p).

— Fermat primality test: pick a random a and check if this condition
holds. For most non-primes, the condition breaks with constant
probability.

e However there are bad cases, so we use instead the Miller-Rabin
primality test: if p is non-prime, the condition breaks with
probability 3/4.

e Repeat ad lib until you're satisfied with the probability of success

12/30

Prime Numbers and Factoring

Factoring

e Multiplying integers (P, Q — PQ) is easy
e Factoring (PQ — P, Q) is hard

e The best algorithm for factoring has subexponential complexity
(GNES):

exp {((64/9)1/3 + o(l)) (log n)Y/3(log log n)2/3} ~ 29(n*"?)

13/30

Prime Numbers and Factoring

Some arithmetic

We work in the group Zy, and Zj, is the (multiplicative) subgroup of
invertible elements (integers < N prime with N).

Euler’s totient function

p(N) = |Zy|
Properties:
¢(p) = p—1 for p prime
o(p1---pe) = QS(1) - d(pe) for p1, ..., pe coprime
6(p°) = p*(p — 1) for p prime
#(pg) = (p—1)(g — 1) for p, g distinct primes

14/30

Prime Numbers and Factoring

Some arithmetic (ctd.)

Lagrange’s theorem
If H is a subgroup of the group G, then the order of H divides the order
of G.

Corollary
In any group G, - of order n, for any a € G, a" = 1.

Consequence: Fermat’s little theorem
For any N, for any a prime with N, a?(™) =1 (mod N).

15/30

Prime Numbers and Factoring

Some arithmetic (ctd.)

Chinese remainder theorem (CRT)
Let N = PQ where P, Q are coprime:

ZN’ZZPXZQ
Ly ~ T x L}

The function f(x) = (x mod P,x mod Q) is such an isomorphism.

16/30

Prime Numbers and Factoring

Some arithmetic (ctd.)

Chinese remainder theorem (CRT)
Let N = PQ where P, Q are coprime:

ZN’ZZPXZQ
Ly ~ T x L}

The function f(x) = (x mod P,x mod Q) is such an isomorphism.
v

If P, Q are known, the inverse of f can be computed in polynomial time.
e Use Euclide’s algorithm to find x, y such that xP + yQ = 1.
e Given (a,b) € Zp X Zq, compute: ¢ = yQa+ xPb (mod N)
e Check that ¢ (mod P) = yQa (mod P) = a and ¢ (mod Q) = xPb
(mod Q) = b.

16/30

Textbook RSA

Constructing a PKE

The Holy Grail of public-key encryption is a trapdoor one-way function.

e One-way: a function f that is easy to compute (x — f(x)), but

difficult to invert
e Trapdoor: the knowledge of some additional information should

make this problem easy again

18/30

Textbook RSA

Constructing a PKE

The Holy Grail of public-key encryption is a trapdoor one-way function.

e One-way: a function f that is easy to compute (x — f(x)), but
difficult to invert

e Trapdoor: the knowledge of some additional information should
make this problem easy again

RSA is the most well-known cryptosystem, and still one of the most used.

18/30

Textbook RSA

Textbook RSA

We work in Zj,.

KeyGen:

e Choose P, Q prime, N = PQ
e Choose e prime with ¢(N), compute d s.t. ed =1 (mod ¢(N)).
o sk=d,pk=(N,e)

Enc (m € Zy):

e c=m°¢
Dec:

e m=cd
Correctness:

(m®)=m*=m (mod N) .

19/30

Textbook RSA

Wait... is this efficient?

KeyGen: in time poly(n), we can generate probable primes (probability of
failure = 27") with Miller-Rabin.

Enc and Dec perform modular exponentiation.
Lete=ey+2e1+...+2" e, 1:

eo+2ey+...+2" 1 eo+2(e1+2(e2+...)...)

mé=m -1 —m
Compute men—1

Square: m?én—1

Multiply: men—2+2en—1

Square: m2en-2+2%en—a

. = O(n) modular operations

DO NOT USE this algorithm in actual software.

20/30

Textbook RSA

RSA problem

The RSA problem is:
e Given x¢ (mod N), with public parameters (e, N), find x
The RSA assumption is that the problem is difficult.

Lemma
Factorisation is harder than RSA: if there is a PPT algorithm solving the
factorisation problem, there is a PPT algorithm solving the RSA problem.

Knowing P and @, we can compute ¢(N), d, and compute (x¢)? = x.

The converse is not known to be truel!

21/30

Textbook RSA

The trapdoor function in RSA

Under the RSA assumption:

f(x) =x% (mod N)

is a trapdoor one-way function with d as the trapdoor.

22/30

Is “textbook RSA” IND-CPA?

Is “textbook RSA” IND-CPA?
(No)

e Textbook RSA is not IND-CPA

Padded RSA

Padded RSA

e Textbook RSA is not IND-CPA (because deterministic)
e To make it IND-CPA, we can add a random padding to the message.

25/30

Padded RSA

Padded RSA

e Textbook RSA is not IND-CPA (because deterministic)
e To make it IND-CPA, we can add a random padding to the message.

Padded RSA PKE

KeyGen:
e Choose P, Q prime, N = PQ
e Choose e prime with ¢(N), compute d st. ed = 1
(mod G(N)).

e sk =d,pk = (N,e)
Enc m € {0,1}*

e Choose r <> U({0, 1}'oe2 V=)
e Compute m’ € Zy which has binary representation (r||m)
e Return c = (m’)®.

Dec:
e Return the ¢ LSBs of m = cd mod N.

25/30

Is Padded-RSA IND-CCA secure?

(Assume that Dec returns the entire C° mod N).

Padded RSA

Question

Is Padded-RSA IND-CCA secure?

(Assume that Dec returns the entire C° mod N).

Choose a random k

Compute ¢’ = k°c mod N

Send ¢’ to the decryption oracle, get m’ = (c’)? mod N
We have: (r|[m)=m'-k=! mod N

26/30

Padded RSA

Theorem

Theorem

If you have access to a black-box that, on input ¢, outputs whether

m = (c? mod N) < N/2, then you can construct a decryption algorithm
in O(n) calls to the black-box.

27/30

Padded RSA

Theorem

Theorem

If you have access to a black-box that, on input ¢, outputs whether
m = (c? mod N) < N/2, then you can construct a decryption algorithm
in O(n) calls to the black-box.

Proof idea:

e Query with ¢: learn if m € [0; N/2|
e Query with 27¢¢: learn if m € [0; N/4[or ...assume that
me [N/4; N/2|
e Query with 272¢¢: learn if 4m mod N =4m — N belongs to
[0: N/2[
e ... (each time we manage to reduce the range)
This is from the MSB. We can do the same with the LSB.

27/30

Padded RSA

Consequence

1.
Padded RSA is CPA-secure (under RSA assumption) = we can
transform a CPA distinguisher into an attacker for the RSA assumption.

28/30

Padded RSA

Consequence

1.
Padded RSA is CPA-secure (under RSA assumption) = we can
transform a CPA distinguisher into an attacker for the RSA assumption.

2.
Padded RSA is CCA-insecure. J

28/30

Padded RSA

Some more remarks / caveats

N should be at least 2048 bits

e with small Hamming weight makes the encryption more efficient
BUT e should not be “too small”

In padded-RSA, use £ = O(log N).

RFC standard RSAES-PKCS1-V1 5 uses “at least 8 octets” of
randomness.

20/30

Padded RSA

Recap

RSA relies on Fermat's little theorem and (x¢)¢ = x®¢, where e is a

public exponent and d a private one

The security of RSA is not known to be equivalent to factoring

(that's just the only way we attack the scheme in general)

e It relies on the RSA assumption, which is that the function x — x
(mod N) is a one-way trapdoor function

e Do NOT use “textbook” RSA, do NOT use the square-multiply

algorithm for exponentiation

e

30/30

	Public-Key Encryption
	Prime Numbers and Factoring
	Textbook RSA
	Padded RSA

