

In the previous lecture

- Definition of a (perfectly secure) **symmetric cryptosystem** (but how do you transmit the key?)
- The one-time pad, Shannon's theorem
- Definitions of an efficient adversary, and indistinguishability notions

Introduction to Cryptography

Part II: Public-Key Encryption – RSA

André Schrottenloher

Inria Rennes
Team CAPSULE

Inria

- 1 Public-Key Encryption
- 2 Prime Numbers and Factoring
- 3 Textbook RSA
- 4 Padded RSA

Public-Key Encryption

Asymmetric encryption

A PKE scheme is a triple of PPT algorithms KeyGen, Enc, Dec:

$$\begin{cases} \text{KeyGen} : 1^n \mapsto \text{sk, pk} \\ \text{Enc} : \text{m, pk} \mapsto \text{c} \\ \text{Dec} : \text{c, sk} \mapsto \text{m} \end{cases} \quad (1)$$

such that $\forall \text{m}, \text{Dec}(\text{sk}, (\text{Enc}(\text{pk}, \text{m}), \text{m})) = \text{m}$.

$\text{sk, pk} = \text{KeyGen}(1^n)$

pk

$\text{c} = \text{Enc}(\text{m}, \text{pk})$

c

$\text{m} = \text{Dec}(\text{c, sk})$

Color code: **not secret**, **secret**, no color = public parameter.

Security of PKE

- “The adversary cannot learn anything on the ciphertext from the plaintext” = perfect security (One-time Pad).
- By restricting to PPT adversaries we get the notion of **semantic security**. However it’s hard to prove / use in practice.
- Instead we use **ciphertext indistinguishability**, which is equivalent and easier to use.

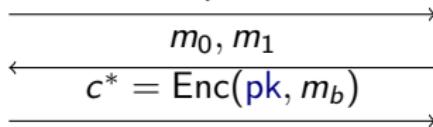
IND-CPA

The IND-CPA security game for PKE is defined as follows.

- **Initialization** : \mathcal{C} chooses $b \leftarrow U(0, 1)$ and keys $(\text{pk}, \text{sk}) \leftarrow \text{KeyGen}(1^n)$, sends pk to \mathcal{A}
- **Find stage** : \mathcal{A} chooses messages m_0, m_1 and sends to \mathcal{C} , who returns $c^* = \text{Enc}(\text{pk}, m_b)$ (the **challenge ciphertext**)
- **Guess stage** : \mathcal{A} computes b' and wins the game if $b = b'$.

Choose $b \leftarrow U(0, 1)$

Choose $(\text{pk}, \text{sk}) \leftarrow \text{KeyGen}(1^n)$



Return b'

IND-CPA (ctd.)

The **advantage** of \mathcal{A} is:

$$\text{Adv}^{\text{CPA}}(\mathcal{A}) = \left| \Pr[\mathcal{A} \text{ wins}] - \frac{1}{2} \right| .$$

If the advantage of any PPT adversary is negligible, then the cipher is said to be **IND-CPA secure**.

IND-CPA (ctd.)

The **advantage** of \mathcal{A} is:

$$\text{Adv}^{\text{CPA}}(\mathcal{A}) = \left| \Pr[\mathcal{A} \text{ wins}] - \frac{1}{2} \right| .$$

If the advantage of any PPT adversary is negligible, then the cipher is said to be **IND-CPA secure**.

Note that:

- The adversary may encrypt at will during the game (since they have the public key) \implies “chosen-plaintext”
- The encryption **must** be probabilistic, otherwise there is a trivial attack

IND-CCA

- IND-CCA is a stronger notion: IND-CPA + decryption queries.
- Decryption queries should not allow the adversary to win trivially (e.g., decrypt c^*)

IND-CCA

- IND-CCA is a stronger notion: IND-CPA + decryption queries.
- Decryption queries should not allow the adversary to win trivially (e.g., decrypt c^*)

The IND-CCA security game is defined like the IND-CPA game, during which \mathcal{A} can additionally perform **decryption queries**. They are answered as follows:

- \mathcal{A} chooses a ciphertext c and sends c to \mathcal{C}
- If $c \neq c^*$, \mathcal{C} returns $\text{Dec}(\text{sk}, c)$
- Otherwise \mathcal{C} returns \perp

IND-CCA (ctd.)

There are two variants:

- **IND-CCA1** (“non-adaptive”): queries only in the “find stage” (before c^* is known)
- **IND-CCA2** (“adaptive”): queries at any point

The advantage of the adversary is defined by:

$$\text{Adv}^{CCA}(\mathcal{A}) = \left| \Pr[\mathcal{A} \text{ Wins}] - \frac{1}{2} \right| .$$

If the advantage of any PPT adversary is negligible, then the cipher is said to be IND-CCA(1,2) secure.

Prime Numbers and Factoring

Prime numbers and how to find them

Prime number theorem

There are $\mathcal{O}(2^n/n)$ prime numbers with n bits.

⇒ if you select a random n -bit integer, it's prime with probability $\mathcal{O}(1/n)$.

Fermat's little theorem

If p is prime, for any $a < p$, $a^{p-1} = 1 \pmod{p}$.

⇒ Fermat primality test: pick a random a and check if this condition holds. For most non-primes, the condition breaks with constant probability.

- However there are bad cases, so we use instead the Miller-Rabin primality test: if p is non-prime, the condition breaks with probability $3/4$.
- Repeat *ad lib* until you're satisfied with the probability of success

Factoring

- Multiplying integers ($P, Q \rightarrow PQ$) is easy
- Factoring ($PQ \rightarrow P, Q$) is **hard**
- The best algorithm for factoring has **subexponential** complexity (GNFS):

$$\exp \left[\left((64/9)^{1/3} + o(1) \right) (\log n)^{1/3} (\log \log n)^{2/3} \right] \simeq 2^{\mathcal{O}(n^{1/3})}$$

Some arithmetic

We work in the group \mathbb{Z}_N , and \mathbb{Z}_N^* is the (multiplicative) subgroup of invertible elements (integers $< N$ prime with N).

Euler's totient function

$$\phi(N) = |\mathbb{Z}_N^*|$$

Properties:

$$\phi(p) = p - 1 \text{ for } p \text{ prime}$$

$$\phi(p_1 \cdots p_\ell) = \phi(p_1) \cdots \phi(p_\ell) \text{ for } p_1, \dots, p_\ell \text{ coprime}$$

$$\phi(p^e) = p^{e-1}(p - 1) \text{ for } p \text{ prime}$$

$$\phi(pq) = (p - 1)(q - 1) \text{ for } p, q \text{ distinct primes}$$

Some arithmetic (ctd.)

Lagrange's theorem

If H is a subgroup of the group G , then the order of H divides the order of G .

Corollary

In any group G, \cdot of order n , for any $a \in G$, $a^n = 1$.

Consequence: Fermat's little theorem

For any N , for any a prime with N , $a^{\phi(N)} = 1 \pmod{N}$.

Some arithmetic (ctd.)

Chinese remainder theorem (CRT)

Let $N = PQ$ where P, Q are coprime:

$$\begin{cases} \mathbb{Z}_N \simeq \mathbb{Z}_P \times \mathbb{Z}_Q \\ \mathbb{Z}_N^* \simeq \mathbb{Z}_P^* \times \mathbb{Z}_Q^* \end{cases}$$

The function $f(x) = (x \bmod P, x \bmod Q)$ is such an isomorphism.

Some arithmetic (ctd.)

Chinese remainder theorem (CRT)

Let $N = PQ$ where P, Q are coprime:

$$\begin{cases} \mathbb{Z}_N \simeq \mathbb{Z}_P \times \mathbb{Z}_Q \\ \mathbb{Z}_N^* \simeq \mathbb{Z}_P^* \times \mathbb{Z}_Q^* \end{cases}$$

The function $f(x) = (x \pmod{P}, x \pmod{Q})$ is such an isomorphism.

If P, Q are known, the inverse of f can be computed in polynomial time.

- Use Euclidean's algorithm to find x, y such that $xP + yQ = 1$.
- Given $(a, b) \in \mathbb{Z}_P \times \mathbb{Z}_Q$, compute: $c = yQa + xPb \pmod{N}$
- Check that $c \pmod{P} = yQa \pmod{P} = a$ and $c \pmod{Q} = xPb \pmod{Q} = b$.

Textbook RSA

Constructing a PKE

The Holy Grail of public-key encryption is a **trapdoor one-way function**.

- **One-way**: a function f that is easy to compute ($x \rightarrow f(x)$), but difficult to invert
- **Trapdoor**: the knowledge of some additional information should make this problem easy again

Constructing a PKE

The Holy Grail of public-key encryption is a **trapdoor one-way function**.

- **One-way**: a function f that is easy to compute ($x \rightarrow f(x)$), but difficult to invert
- **Trapdoor**: the knowledge of some additional information should make this problem easy again

RSA is **the** most well-known cryptosystem, and still one of the most used.

Textbook RSA

We work in \mathbb{Z}_N^* .

KeyGen:

- Choose P, Q prime, $N = PQ$
- Choose e prime with $\phi(N)$, compute d s.t. $ed = 1 \pmod{\phi(N)}$.
- $\text{sk} = d, \text{pk} = (N, e)$

Enc ($\text{m} \in \mathbb{Z}_N^*$):

- $\text{c} = \text{m}^e$

Dec:

- $\text{m} = \text{c}^d$.

Correctness:

$$(\text{m}^e)^d = \text{m}^{ed} = \text{m} \pmod{N} .$$

Wait... is this efficient?

KeyGen: in time $\text{poly}(n)$, we can generate probable primes (probability of failure = 2^{-n}) with Miller-Rabin.

Enc and Dec perform **modular exponentiation**.

Let $e = e_0 + 2e_1 + \dots + 2^{n-1}e_{n-1}$:

$$m^e = m^{e_0 + 2e_1 + \dots + 2^{n-1}e_{n-1}} = m^{e_0 + 2(e_1 + 2(e_2 + \dots)) \dots}$$

- Compute $m^{e_{n-1}}$
- Square: $m^{2e_{n-1}}$
- Multiply: $m^{e_{n-2} + 2e_{n-1}}$
- Square: $m^{2e_{n-2} + 2^2e_{n-1}}$
- ... $\Rightarrow \mathcal{O}(n)$ modular operations

DO NOT USE this algorithm in actual software.

RSA problem

The **RSA problem** is:

- Given $x^e \pmod{N}$, with public parameters (e, N) , find x

The **RSA assumption** is that the problem is difficult.

Lemma

Factorisation is harder than RSA: if there is a PPT algorithm solving the factorisation problem, there is a PPT algorithm solving the RSA problem.

Knowing P and Q , we can compute $\phi(N)$, d , and compute $(x^e)^d = x$.

The converse is not known to be true!

The trapdoor function in RSA

Under the **RSA assumption**:

$$f(x) = x^e \pmod{N}$$

is a trapdoor one-way function with d as the trapdoor.

Padded RSA

Padded RSA

Is “textbook RSA” IND-CPA?

Padded RSA

Is “textbook RSA” IND-CPA?
(No)

Padded RSA

- Textbook RSA is not IND-CPA

Padded RSA

- Textbook RSA is not IND-CPA (because deterministic)
- To make it IND-CPA, we can add a random **padding** to the message.

Padded RSA

- Textbook RSA is not IND-CPA (because deterministic)
- To make it IND-CPA, we can add a random **padding** to the message.

Padded RSA PKE

KeyGen:

- Choose P, Q prime, $N = PQ$
- Choose e prime with $\phi(N)$, compute d s.t. $ed \equiv 1 \pmod{\phi(N)}$.
- $sk = d, pk = (N, e)$

Enc $m \in \{0, 1\}^\ell$

- Choose $r \leftarrow U(\{0, 1\}^{\log_2 N - \ell})$
- Compute $m' \in \mathbb{Z}_N$ which has binary representation $(r \| m)$
- Return $c = (m')^e$.

Dec:

- Return the ℓ LSBs of $m = c^d \pmod{N}$.

Question

Is Padded-RSA IND-CCA secure?

(Assume that Dec returns the entire $C^d \pmod{N}$).

Question

Is Padded-RSA IND-CCA secure?

(Assume that Dec returns the entire $C^d \pmod{N}$).

- Choose a random k
- Compute $c' = k^e c \pmod{N}$
- Send c' to the decryption oracle, get $m' = (c')^d \pmod{N}$
- We have: $(r \parallel m) = m' \cdot k^{-1} \pmod{N}$

Theorem

Theorem

If you have access to a black-box that, on input c , outputs whether $m = (c^d \bmod N) < N/2$, then you can construct a decryption algorithm in $\mathcal{O}(n)$ calls to the black-box.

Theorem

Theorem

If you have access to a black-box that, on input c , outputs whether $m = (c^d \bmod N) < N/2$, then you can construct a decryption algorithm in $\mathcal{O}(n)$ calls to the black-box.

Proof idea:

- Query with c : learn if $m \in [0; N/2[$
- Query with $2^{-e}c$: learn if $m \in [0; N/4[$ or ... assume that $m \in [N/4; N/2[$
- Query with $2^{-2e}c$: learn if $4m \bmod N = 4m - N$ belongs to $[0; N/2[$
- ... (each time we manage to reduce the range)

This is from the MSB. We can do the same with the LSB.

Consequence

1.

Padded RSA is CPA-secure (under RSA assumption) \implies we can transform a CPA distinguisher into an attacker for the RSA assumption.

Consequence

1.

Padded RSA is CPA-secure (under RSA assumption) \implies we can transform a CPA distinguisher into an attacker for the RSA assumption.

2.

Padded RSA is CCA-insecure.

Some more remarks / caveats

- N should be at least 2048 bits
- e with small Hamming weight makes the encryption more efficient
- BUT e should not be “too small”
- In padded-RSA, use $\ell = \mathcal{O}(\log N)$.
RFC standard RSAES-PKCS1-V1_5 uses “at least 8 octets” of randomness.

Recap

- RSA relies on Fermat's little theorem and $(x^e)^d = x^{ed}$, where e is a public exponent and d a private one
- The security of RSA is **not** known to be equivalent to factoring (that's just the only way we attack the scheme in general)
- It relies on the **RSA assumption**, which is that the function $x \mapsto x^e \pmod{N}$ is a one-way trapdoor function
- Do NOT use “textbook” RSA, do NOT use the square-multiply algorithm for exponentiation