

Organisation

- 6 cours (André Schrottenloher)
- 7 TDs (Clémence Chevignard)
- 1 DM
- 1 examen final

Matériel de cours (notes de cours, plan, slides, TDs, corrigés...) sur:
<https://andreschrottenloher.github.io/pages/teaching-2026.html>

E-mail:
andre(dot)schrottenloher(at)inria(dot)fr

(Je suis aussi sur Discord).

Introduction to Cryptography

Part I: Introduction – Defining Security

André Schrottenloher

Inria Rennes
Team CAPSULE

Inria

1 History

2 Principles

3 Perfect Security

4 What is an Adversary?

5 Indistinguishability

What is crypto today?

Definition

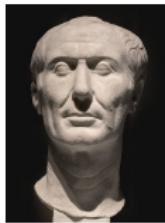
Protect **information** transmitted through **insecure channels** in presence of **adversaries** with the power to **listen** to and **corrupt** the transmitted messages.

This science borrows tools from:

- Information theory;
- Complexity theory and algorithms;
- Probabilities;
- Proof systems;
- (Computational) algebra;
- Quantum information theory.

History

Historical ciphers



Caesar

Al-Kindi (born 801 AD)

Caesar cipher

- Shift the alphabet by a fixed number
- Easy to break if you know the trick (only 26 possibilities, visible patterns. . .)

Substitution cipher

- Choose a **permutation of the letters** of your alphabet
- $26!$ possibilities
- Break by **frequency analysis, bigrams and probable words**

Historical ciphers (ctd.)

Vigenère cipher

- Shift (like Caesar) but using a random, repeated keyword.
- Guess key length, analyze frequencies.

Rotor machines

After the typewriter, encryption based on rotor machines (e.g., the Enigma family).

- Rotor encodes the key
- Typed symbol encrypted with the next symbol on the rotor
- Rotor moves as you type, changing the key each time

Cryptanalysis of Enigma

- First breaks in the 1930s by Polish cryptographers
- First “cryptologic bombs” used for cipher-breaking
- During the war: upgrade of the bombs by the British & the US, allowing to break the 4-rotor version

Dawn of modern cryptography (ca. 1950)

Turing: co-inventor of modern-day computer science, well-known for his code-breaking work during WWII

Shannon: information theory, information-theoretic security, and cipher design.

Dawn of asymmetric cryptography (ca. 1970)

Diffie & Hellman: introduction of the Diffie-Hellman key-exchange, and mathematical foundations of public-key cryptography

Rivest, Shamir & Adleman: RSA cryptosystem (which became the most popular)

Credit: the Royal Society (Wikimedia Commons)

The modern era

- Network protocols (HTTPS, SSL, TLS, PGP, wifi, 5G)
- Encrypted messaging apps
- Hardware: credit cards, DVD, Blu-ray
- Anti-piracy software
- Electronic voting...

Principles

Cryptography = protecting information exchanged on insecure channels in the presence of **malicious, powerful adversaries**.

Cryptography = protecting information exchanged on insecure channels in the presence of **malicious, powerful adversaries**.

Security can be either:

- Proven unconditionally (**information-theoretic**)
- Reduced to **computational assumptions**

⇒ more general in public-key crypto, more ad hoc in secret-key crypto.

What we want to achieve (important slide!)

- **Confidentiality**: the transmitted information remains secret \implies **encryption**
- **Authenticity**: guarantees that the transmitted information has indeed been sent by Alice (resp. Bob)
- **Integrity**: guarantees that the transmitted information has not been tampered with
- **Non-repudiation**: guarantees that parties cannot later deny being the author of a message

And nowadays, even more goals: multi-party secure computation, secret sharing, proofs of knowledge, computation on encrypted data, etc.

Modern-day crypto constraints

Designing secure cryptography is not easy, but what's most difficult is to make it secure **and** cost-efficient ("lightweight").

- **Latency:** the time to perform a key-exchange is counted in milliseconds;
- **Energy:** crypto on small, battery-operated devices has to use the minimal number of operations possible;
- **Circuit size:** crypto on embedded chips (e.g., smart cards) has to use the smallest possible circuits. This puts also constraints on key sizes.

Our goal nowadays is to **minimize computational resources** for a given **security level**.

Cryptography building blocks

Primitives

A primitive is a building block that offers a “low-level” functionality.

Example: an asymmetric / symmetric cipher, a signature, a block cipher, stream cipher, etc.

Protocols

A protocol specifies an entire communication process. It makes use of primitives as “black boxes” (for example, you can use any block cipher).

The security of a protocol is **reduced** to the security of the primitives: if the primitives are secure, the protocol is secure.

Crypto design process

1. Some people design a primitive
2. They do **their own security analysis**
3. They **publish the result** and make **security claims**
4. Everybody else tries to cryptanalyze (and contradict the claims)
5. After some time, we gain **trust**, and some institution (ISO, IETF) may standardize the scheme

$$\text{Trust} = \int_{t=0}^{+\infty} \text{Cryptanalysis effort } dt$$

“Real” software only uses well-established, publicly audited, standardized designs (RSA, ECC, AES-GCM).

Perfect Security

Symmetric cipher

Let \mathcal{K} , \mathcal{M} , \mathcal{C} be the **key space**, **plaintext space** and **ciphertext space**.

A **symmetric cipher** is a triple of PT algorithms KeyGen , Enc , Dec with signature:

$$\begin{cases} \text{KeyGen} : \emptyset \rightarrow \mathcal{K} \\ \text{Enc} : \mathcal{K} \times \mathcal{M} \rightarrow \mathcal{C} \\ \text{Dec} : \mathcal{K} \times \mathcal{C} \rightarrow \mathcal{M} \end{cases}$$

and satisfying the **correctness property**:

$$\forall k \in \mathcal{K}, \forall m \in \mathcal{M}, \text{Dec}(k, \text{Enc}(k, m)) = m .$$

We assume that all ciphertexts are accessible.

The algorithms KeyGen , Enc , Dec are randomized, poly-time and public (per Kerckhoffs' principles).

Perfect security (= information-theoretic security)

A symmetric cipher is **perfectly secure** if:

- for any random variable M over \mathcal{M} ;
- any message $m \in \mathcal{M}$;
- any ciphertext $c \in \mathcal{C}$:

$$\Pr [M = m | \text{Enc}(\text{KeyGen}, M) = c] = \Pr [M = m] .$$

A symmetric cipher is **perfectly secure** if for any $m_1, m_2, c \in \mathcal{M} \times \mathcal{M} \times \mathcal{C}$:

$$\Pr_{k \leftarrow \text{KeyGen}} [\text{Enc}(k, m_1) = c] = \Pr_{k \leftarrow \text{KeyGen}} [\text{Enc}(k, m_2) = c] .$$

Proof in TD.

The One-time Pad (Vernam's cipher)

$$\mathcal{K} = \mathcal{M} = \mathcal{C} = \{0, 1\}^n$$

KeyGen: $k \leftarrow U(\mathcal{K})$

$$\text{Enc}(k, m) = m \oplus k$$

$$\text{Dec}(k, c) = c \oplus k$$

It's correct:

$$\forall k \in \mathcal{K}, \forall m \in \mathcal{M}, \text{Dec}(k, \text{Enc}(k, m)) = m .$$

Lemma

The One-Time Pad has perfect security.

The One-time Pad (Vernam's cipher)

$$\mathcal{K} = \mathcal{M} = \mathcal{C} = \{0, 1\}^n$$

KeyGen: $k \leftarrow U(\mathcal{K})$

$$\text{Enc}(k, m) = m \oplus k$$

$$\text{Dec}(k, c) = c \oplus k$$

It's correct:

$$\forall k \in \mathcal{K}, \forall m \in \mathcal{M}, \text{Dec}(k, \text{Enc}(k, m)) = m .$$

Lemma

The One-Time Pad has perfect security.

Proof: let $K = \text{KeyGen}()$

$$\begin{aligned} \forall m, c, \Pr [M = m | \text{Enc}(K, M) = c] &= \Pr [M = m | M \oplus K = c] \\ &= \Pr [m \oplus K = c] = \Pr [K = m \oplus c] . \end{aligned}$$

K is uniform, so whichever c and m one has: $\Pr [K = m \oplus c] = 2^{-n}$.

The One-time Pad (ctd.)

The One-Time Pad is not a very practical cipher . . .

The One-time Pad (ctd.)

The One-Time Pad is not a very practical cipher ...

- You can only use the key once;
- How can you transmit such a key?

It would be much better to have a **small key** that you could somehow **expand**, i.e., a **stream cipher**.

⇒ but can such a cipher have perfect security?

Shannon's theorem

Lemma

Perfect security implies $|\mathcal{K}| \geq |\mathcal{C}| \geq |\mathcal{M}|$.

Theorem

Let $\text{KeyGen}, \text{Enc}, \text{Dec}$ be a symmetric cipher on $\mathcal{K}, \mathcal{M}, \mathcal{C}$ such that $|\mathcal{K}| = |\mathcal{M}| = |\mathcal{C}|$. It has perfect security **iff**:

- Each key is chosen with probability $1/|\mathcal{K}|$
- For all $m \in \mathcal{M}, c \in \mathcal{C}$, there is a unique k such that $\text{Enc}(m, k) = c$.

What is an Adversary?

A cryptographic scheme

... has several participants nicknamed Alice, Bob, Charlie, etc. (In this course: Alice & Bob).

The **adversary** (Eve) may **listen to** or **modify** the exchanged communications between Alice and Bob.

- **Alice, Bob and Eve are algorithms**
- They are randomized
- Eve is a Monte-Carlo algorithm (makes errors)

Definition of security

An adversary can **always win** with some probability, for example they may guess the key correctly.

But an adversary is not successful unless they run in polynomial time, and succeed with large probability.

Definition

A scheme is secure (for some security notion) if any **efficient** adversary can only attack (this security notion) with **negligible** probability.

Let n be the **security parameter** of the scheme:

- efficient = $\text{poly}(n)$ (PPT algorithm)
- negligible = $o(n^{-c})$ for any constant c , i.e., smaller than any inverse polynomial

Indistinguishability

Statistical indistinguishability

Definition

Let X, Y be two random variables on a set A . Their **statistical distance** is:

$$\Delta(X, Y) = \frac{1}{2} \sum_{a \in A} |\Pr[X = a] - \Pr[Y = a]| .$$

It's indeed a distance.

Two distributions D_0, D_1 are **statistically indistinguishable** if there is a negligible function negl such that: $\Delta(D_0, D_1) \leq \text{negl}(n)$.

Computational indistinguishability

Two distributions are computationally indistinguishable if no **efficient algorithm** can distinguish from them.

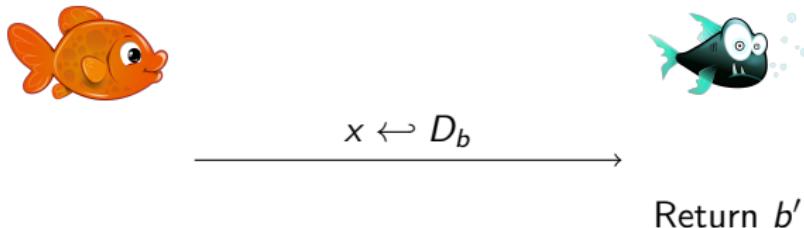
⇒ given access to **samples** of D , decide if $D = D_0$ or $D = D_1$.

We formalize this using **games**.

Distinguishing games

Let D_0, D_1 be two distributions over $\{0, 1\}^n$. The distinguishing games G_0, G_1 are defined as follows.

The adversary \mathcal{D} communicates with a challenger \mathcal{C} .



- During the game \mathcal{D} may perform a **query**: the challenger will return $x \leftarrow D_b$
- At the end \mathcal{D} returns a bit b'

The **advantage** of \mathcal{D} is:

$$\text{Adv}(\mathcal{D}) = \left| \Pr \left[\mathcal{D} \xrightarrow{G_0} 1 \right] - \Pr \left[\mathcal{D} \xrightarrow{G_1} 1 \right] \right|.$$

\mathcal{D} is a **distinguisher** if the advantage is non-negligible.

Second definition

In this second definition we use a **single game** G .

Choose $b \leftarrow U(0, 1)$

$$x \leftarrow D_b$$

Return b'

- **Initialization:** \mathcal{C} chooses a bit $b \in \{0, 1\}$ u.a.r.
- **Queries:** \mathcal{C} will respond with $x \leftarrow D_b$
- **Finalization:** \mathcal{D} will return a bit b' . If $b = b'$, \mathcal{D} **wins** the game

\mathcal{D} is a distinguisher if $\Pr[Win] \geq 1/2 + \varepsilon$ for some non-negligible ε .

Computational indistinguishability

D_0, D_1 are computationally indistinguishable if \forall PPT adversary \mathcal{D} :

$$|\Pr[\mathcal{D} \xrightarrow{G_0} 1] - \Pr[\mathcal{D} \xrightarrow{G_1} 1]| \leq \text{negl}(n)$$

This is equivalent to: \forall PPT adversary \mathcal{D} :

$$|\Pr[Win] - 1/2| \leq \text{negl}(n)$$

Proof of the equivalence by double reduction:

1. from a PPT distinguisher \mathcal{A} for the first definition, create a PPT distinguisher for the second
2. conversely

Proof of the equivalence

Let \mathcal{A} be a distinguisher for the **second** definition (single game). Let \mathcal{A}' that runs in the **first** definition (two games) as follows: it simply runs \mathcal{A} .

We relate the advantage of \mathcal{A} (in the second definition) with the one of \mathcal{A}' (in the first definition) as follows:

$$\begin{aligned}
 \text{Adv}(\mathcal{A}') &= \left| \Pr \left[\mathcal{A}' \xrightarrow{G_0} 1 \right] - \Pr \left[\mathcal{A}' \xrightarrow{G_1} 1 \right] \right| \\
 &= \left| \Pr [\mathcal{A} \rightarrow 1 | b = 0] - \Pr [\mathcal{A} \rightarrow 1 | b = 1] \right| \quad (\text{now running in } G) \\
 &= \left| \Pr [b' = 1 | b = 0] - \Pr [b' = 1 | b = 1] \right| \\
 &= \left| 1 - \Pr [b' = 0 | b = 0] - \Pr [b' = 1 | b = 1] \right| \\
 &= \left| 1 - 2 \Pr [b' = 0 \wedge b = 0] - 2 \Pr [b' = 1 \wedge b = 1] \right| \\
 &= \left| 1 - 2 \Pr [Win] \right| = \frac{1}{2} \text{Adv}(\mathcal{A}) .
 \end{aligned}$$

Where we used the uniformity of b . So, if there exists a distinguisher for the first definition (non-negligible advantage), then there is one for the second, and conversely.

Relation between statistical & computational indistinguishability

Let X, Y be two random variables on a set A .

If the distributions X and Y are statistically indistinguishable ($\Delta(X, Y) = \text{negl}(n)$), then they are computationally indistinguishable.

Proof sketch

Step 1: prove this for a **single-query** algorithm.

Let X, Y be two random variables on a set A .

For any (randomized) function $f : A \rightarrow B$, $\Delta(f(X), f(Y)) \leq \Delta(X, Y)$.

Proof sketch

Step 1: prove this for a **single-query** algorithm.

Let X, Y be two random variables on a set A .

For any (randomized) function $f : A \rightarrow B$, $\Delta(f(X), f(Y)) \leq \Delta(X, Y)$.

\implies in particular the adversary \mathcal{A} implements a function f into $\{0, 1\}$.
Then we have:

$$\begin{aligned}\text{Adv}(\mathcal{A}) &= |\Pr[f(X) = 1] - \Pr[f(Y) = 1]| \\ &= |\Pr[f(X) = 0] - \Pr[f(Y) = 0]| \\ \implies \text{Adv}(\mathcal{A}) &= \Delta(f(X), f(Y)) .\end{aligned}$$

Proof sketch

Step 2: extend this to the multi-query case (in TD).

Recap

- The one-time pad has perfect security
- Perfect security implies large keys
- We use notions of **computational** security
- Indistinguishability: **statistical** implies **computational**
- Statistical indistinguishability is defined by the **statistical distance**
- Computational indistinguishability is defined by **games** (two equivalent definitions)