
Introduction à la Cryptographie TD 1 – définir la sécurité

Des éléments de solution sont affichés en vert.

Distance Statistique

On rappelle que la distance statistique entre deux variables aléatoires discrètes sur un espace
dénombrable A est définie par :

∆(X,Y) =
1

2

∑
a∈A
|Pr [X = a]− Pr [Y = a]| .

Question 1. Soit X et Y deux variables aléatoires à valeurs dans un ensemble A. Montrer que
pour toute fonction (potentiellement randomisée) f de domaine A, à valeurs dans un ensemble
B, ∆(f(X), f(Y)) ≤ ∆(X,Y).

Solution. Soit B = f(A) l’image de A par f .

∆(f(X), f(Y)) =
1

2

∑
b∈B
|Pr [f(X) = b]− Pr [f(Y) = b] |

=
1

2

∑
b∈B

∣∣∣∣∣∣∣
∑
a∈A

Pr [f(X) = b|X = a]︸ ︷︷ ︸
=Pr[f(a)=b]

Pr [X = a]− Pr [f(Y) = b|Y = a]︸ ︷︷ ︸
=Pr[f(a)=b]

Pr [Y = a]

∣∣∣∣∣∣∣
=

1

2

∑
b∈B

∣∣∣∣∣∑
a∈A

Pr [f(a) = b] (Pr [X = a]− Pr [Y = a])

∣∣∣∣∣
≤ 1

2

∑
a∈A

∑
b∈B

Pr [f(a) = b] |Pr [X = a]− Pr [Y = a]|

=
1

2

∑
a∈A


∑
b∈B

Pr [f(a) = b]︸ ︷︷ ︸
=1

 |Pr [X = a]− Pr [Y = a]| .

Question 2. En déduire que l’avantage de tout adversaire A pour distinguer entre X et Y en
une requête est inférieur à ∆(X,Y).

Solution. Dans les jeux consistant à distinguer, l’adversaire A est une fonction randomisée f
à valeurs dans 0, 1. Dans le jeu G0 on lui donne accès à X, dans le jeu G1 on lui donne accès
à Y .

L’avantage est la différence entre la probabilité de renvoyer 1 dans les deux jeux, donc :

Adv(A) = |Pr [f(X) = 1]− Pr [f(Y) = 1] |

Notons également que |Pr [f(X) = 0]−Pr [f(Y) = 0] | = |1−Pr [f(X) = 1]−1+Pr [f(Y) = 1] | =
Adv(A). Donc :

∆(f(X), f(Y)) =
1

2
(Adv(A) + Adv(A)) = Adv(A) .

On a donc que pour tout distingueur A (à une requête) : Adv(A) ≤ ∆(X,Y).

Question 3. Soit (X1, . . . , Xk) et (Y1, . . . , Yk) deux listes de variables aléatoires totalement
indépendantes. Montrer que :

∆((Xi)i, (Yi)i) ≤
k∑

i=1

∆(Xi, Yi) . (1)

1/5

Introduction à la Cryptographie TD 1 – définir la sécurité

Solution. On fait la démonstration pour k = 2. On en déduit le cas général par récurrence.

∆((X1, X2), (Y1, Y2)) =
1

2

∑
a1,a2∈A×A

|Pr [X1 = a1] Pr [X2 = a2]− Pr [Y1 = a1] Pr [Y2 = a2]|

≤ 1

2

∑
a1,a2∈A×A

|Pr [X1 = a1] Pr [X2 = a2]− Pr [X2 = a2] Pr [Y1 = a1]|

+ |Pr [X2 = a2] Pr [Y1 = a1]− Pr [Y1 = a1] Pr [Y2 = a2]|

≤ 1

2

∑
a1,a2∈A×A

Pr [X2 = a2] |Pr [X1 = a1]− Pr [Y1 = a1]|

+ Pr [Y1 = a1] |Pr [X2 = a2]− Pr [Y2 = a2]|
≤ ∆(X1, Y1) + ∆(X2, Y2) .

Question 4. Montrer que si ∆(X,Y) = negl(n), les distributions X et Y sont calculatoire-
ment indistinguables. On supposera pour cela qu’un adversaire s’exécutant en temps t effectue
exactement t requêtes indépendantes à la distribution.

Solution. Dans les jeux de distingueur l’adversaire a droit à un nombre multiple de requêtes.
Les résultats de ces requêtes sont des copies indépendantes de X ou de Y , donc on peut combiner
les questions précédentes.

Un adversaire efficace doit s’exécuter en temps poly(n), donc ne peut faire que poly(n)
requêtes. Soit k = poly(n) le nombre de requêtes effectuées (on le suppose constant pour simpli-
fier). On a donc :

Adv(A) ≤ ∆((X1, . . . , Xk), (Y1, . . . , Yk)) ≤ k∆(X,Y) = poly(n) negl(n) = negl(n) .

C’est vrai pour tout adversaire PPT, ce qui nous permet de conclure.

Question 5 (Bonus). Comment gérer le cas d’un adversaire s’exécutant en temps poly(n),
mais faisant un nombre variable de requêtes ?

Solution. On remplace A par un adversaire A′ qui exécute A. À chaque étape de temps, A′
fait une requête et :

• Si A était effectivement en train de faire une requête, A′ transfère ce résultat à A ;
• Sinon A′ jette le résultat à la poubelle et continue d’exécuter A.

Le nombre de requêtes effectué par A′ est bien constant. De plus Adv(A) ≤ Adv(A′) car si A
réussit, A′ réussit aussi. Donc pour tout adversaire A en temps poly(n) on a bien :

Adv(A) ≤ Adv
(
A′

)
≤ poly(n)∆(X,Y) = negl(n) .

Théorème de Shannon

Le but de cet exercice est de prouver le résultat suivant de Shannon.

Theorem 1. Soit KeyGen,Enc,Dec un chiffrement symétrique tel que |M| = |C| = |K|. Le
schéma est parfaitement sûr si et seulement si :

1. Toute clé k ∈ K est choisie avec probabilité 1/|K| par KeyGen
2. Pour tout m ∈M et tout c ∈ C, il existe une unique clé k ∈ K telle que Enc(m, k) = c.

D’abord, nous justifions que l’hypothèse faite sur les espaces est raisonnable.

2/5

Introduction à la Cryptographie TD 1 – définir la sécurité

Question 6. On rappelle la définition de la sécurité parfaite : pour toute variable aléatoire M ,
m et c :

Pr [M = m|Enc(KeyGen,M) = c] = Pr [M = m] .

Montrer que si le chiffrement est correct, on a |C| ≥ |M| ; et que si le chiffrement est
parfaitement sûr, on a |K| ≥ |C|.

Solution. Si le chiffrement est correct, la fonction Enc(k, ·) est injective pour tout k ∈ K, donc
|C| ≥ |M|. Dans la suite, on note C = Enc(KeyGen,M) (qui est aussi une variable aléatoire).

Si nous fixons m ∈ M, alors par la propriété de sécurité parfaite Pr [M = m|C = c] =
Pr [M = m]. De plus Pr [M = m|C = c] = Pr [C = c|M = m] × Pr [M = m] /Pr [C = c], donc
inversement Pr [C = c|M = m] = Pr [C = c] > 0 pour tout c (tous les chiffrements sont acces-
sibles).

Donc pour tout m il doit exister une clé qui envoie m sur c, i.e., |K| ≥ |C|.

On va utiliser la définition suivante de la sécurité parfaite :

Un chiffrement symétrique est parfaitement sûr si, pour tous m1,m2, c ∈ M×
M× C :

Pr
k←KeyGen

[Enc(k,m1) = c] = Pr
k←KeyGen

[Enc(k,m2) = c] . (2)

Question 7. Montrer l’équivalence avec l’autre définition.

Solution. Première implication. Supposons que pour tous m1,m2, c :

Pr
k←KeyGen

[Enc(k,m1) = c] = Pr
k←KeyGen

[Enc(k,m2) = c]

On a, pour toute variable aléatoire M , m et c :

Pr [M = m|Enc(KeyGen,M) = c] =
Pr [M = m ∧ Enc(KeyGen,M) = c]

Pr [Enc(KeyGen,M) = c]

=
Pr [M = m ∧ Enc(KeyGen,m) = c]

Pr [Enc(KeyGen,M) = c]

= Pr [M = m]
Pr [Enc(KeyGen,m) = c]

Pr [Enc(KeyGen,M) = c]

On montre que :

Pr [Enc(KeyGen,M) = c] =
∑

m′∈M
Pr

[
M = m′

]
Pr [Enc(KeyGen,m) = c]

=
∑

m′∈M
Pr

[
M = m′

]
(Pr [Enc(KeyGen,m) = c]) par hypothèse

= Pr [Enc(KeyGen,m) = c]
∑

m′∈M
Pr

[
M = m′

]
︸ ︷︷ ︸

=1

Donc :
Pr [M = m|Enc(KeyGen,M) = c] = Pr [M = m] .

Deuxième implication. Supposons que pour toute variable aléatoire M , m et c :

Pr [M = m|Enc(KeyGen,M) = c] = Pr [M = m] .

Soit m1,m2, c et M la distribution uniforme sur {m1,m2}. On a :{
Pr [M = m1|Enc(KeyGen,M) = c] = Pr [M = m1] =

1
2

Pr [M = m2|Enc(KeyGen,M) = c] = Pr [M = m2] =
1
2

3/5

Introduction à la Cryptographie TD 1 – définir la sécurité

Donc :

Pr [M = m1|Enc(KeyGen,M) = c] = Pr [M = m2|Enc(KeyGen,M) = c]

Pr [M = m1] Pr [Enc(KeyGen,m1) = c]

Pr [Enc(KeyGen,M) = c]
=

Pr [M = m2] Pr [Enc(KeyGen,m2) = c]

Pr [Enc(KeyGen,M) = c]

Pr [Enc(KeyGen,m1) = c] = Pr [Enc(KeyGen,m2) = c] .

Question 8. Montrer que les conditions 1. et 2. sont suffisantes pour la sécurité parfaite.

Solution. En utilisant la deuxième définition c’est assez clair.
En effet pour tout m, c : Prk [Enc(k,m) = c] = 1

|K| car c’est la probabilité que k (qui est

choisie uniformément au hasard par KeyGen) atteigne la valeur unique telle que Enc(k,m) = c.

Question 9. Montrer le sens inverse de la preuve.

Solution. Soit m ∈ M. Nous savons que pour tout c, il existe au moins une clé k telle que
Enc(m, k) = c. Par conséquent :

|{Enc(k,m) , k ∈ K}| = |C|

mais comme |C| = |K| par hypothèse, on a :

|{Enc(k,m) , k ∈ K}| = |K|

ce qui donne l’unicité.
On revient ensuite à la propriété de sécurité parfaite. On a :

Pr [M = m|Enc(K,M) = c] = Pr [M = m] = Pr [Enc(K,M) = c|M = m]
Pr [M = m]

Pr [Enc(K,M) = c]

Donc pour tout m, c : Pr [Enc(K,M) = c|M = m] = Pr [Enc(K,M) = c] (sur les variables aléatoires
K, du KeyGen, et M , du message). Or il existe exactement une clé k telle que Enc(k,m) = c,
donc Pr [Enc(K,M) = c|M = m] = Pr [K = k]. Et donc pour toute clé k :

Pr [K = k] = Pr [Enc(K,M) = c] .

Ici c est une constante, et Pr [Enc(K,M) = c] est donc aussi une constante. Les clés sont donc
toutes utilisées avec la même probabilité, qui doit donc être 1/|K|.

Chiffrement de Vigenère

Le chiffrement de Vigenère sur un alphabet fini strictement ordonné Σ est une version relaxée
et généralisée du OTP, où la clé peut être plus petite que les messages considérés, et on utilise
l’addition modulaire au lieu du XOR (qui est l’addition modulo 2). Pour chiffrer / déchiffrer,
on répète la clé (abc→ abcabcabc . . .) pour obtenir une clé aussi longue que le message / chiffré,
et on ajoute (modulairement) la clé au message / chiffré, caractère par caractère.

Question 10. Définir formellement le schéma.

Solution. Définir KeyGen,Enc,Dec. Pour KeyGen, on prend en entrée la longueur du mot, et
on choisit le mot au hasard (par exemple).

Nous considérons le jeu de sécurité suivant sur un schéma de chiffrement Π avec un adversaire
A, noté GEAV .

4/5

Introduction à la Cryptographie TD 1 – définir la sécurité

1. A choisit deux messages m0,m1 de P
2. La clé k est générée par KeyGen, un bit b←↩ U(0, 1) est choisi
3. c = Enc(mb, k) est donné à A
4. A renvoie un bit b′

La sortie du jeu, notée GEAV (A, n) est ⊤ si b = b′ et ⊥ sinon. On peut donc remarquer que
GEAV (A, n) est une variable aléatoire à valeurs dans {⊤,⊥}.

Formellement :

Definition 1 (Sécurité EAV). Un schéma de chiffrement symétrique est EAV (secure against ea-
vesdropping) si pour tout adversaire PPTA son avantage AdvEAV (A) = |Pr

[
GEAV (A, n)← ⊤

]
−

1/2| est négligeable en n. Le jeu de sécurité est donné par :

1. (m0,m1) ∈M2 ← A(1n)
2. k ← KeyGen(1n), b←↩ U(0, 1)
3. b′ ← A(Enc(k,mb))
4. Si b = b′ alors ⊤ sinon ⊥

Dans la suite, le chiffrement de Vigenère est noté Π, et l’alphabet latin Σ.

Question 11. Montrer qu’un adversaire A participant au jeu EAV peut retrouver la clé k.

Solution. Il suffit d’appeler le chiffrement sur une entrée contenant un bloc de zéros, de lon-
gueur la taille de la clé (k + 0 = 0 sur chaque caractère correspondant). L’adversaire choisit
donc deux messages quelconques avec un blos de zéros.

Question 12. Montrer que le chiffrement de Vigenère n’est pas EAV-sûr.

Solution. Puisque l’adversaire peut retrouver la clé, il peut déchiffrer, donc distinguer le chif-
frement de m0 de celui de m1.

L’attaque s’exécute donc ainsi : l’adversaire produit deux messages 0∥m′0 et 0∥m′1 avec un
bloc de zéros et deux blocs arbitraires différents, le challenger chiffre, l’adversaire retrouve la clé
grâce au bloc de zéros, ensuite il déchiffre c, et distingue entre les deux.

5/5

