Introduction a la Cryptographie TD 1 — définir la sécurité

Des éléments de solution sont affichés en vert.

Distance Statistique
On rappelle que la distance statistique entre deux variables aléatoires discretes sur un espace
dénombrable A est définie par :
1
A(X,Y) = 2;\&[)( =a]-Pr[Y =4 .
a

Question 1. Soit X et Y deux variables aléatoires a valeurs dans un ensemble A. Montrer que
pour toute fonction (potentiellement randomisée) f de domaine A, d valeurs dans un ensemble

B, A(f(X), [(Y)) < A(X,Y).
Solution. Soit B = f(A) l'image de A par [.

A(f(X), f(Y)) = %Z\Pr [f(X) =b] = Pr[f(Y) = b]|

beB
= % ZPr [f(X)=0bX =0a]Pr[X =a] —Pr[f(Y)=0b]Y =a]Pr[Y =q]
beEB |acA =Pr[f(a)=b] =Pr[f(a)=0]
= % ZPr[]‘(a) =0 (Pr[X =a]—Pr[Y =d])
beB lacA
< 23 S Pr[f(a) = b [Pr[X = a] = Pr[Y = d|
acAbeB

= | Pl = 0] | [Pr[x =] Py =]

Question 2. En déduire que l'avantage de tout adversaire A pour distinguer entre X etY en
une requéte est inférieur a A(X,Y).

Solution. Dans les jeux consistant a distinguer, l'adversaire A est une fonction randomisée f
a valeurs dans 0, 1. Dans le jeu Gy on lui donne accés a X, dans le jeu Gy on lui donne acces
ay.

L’avantage est la différence entre la probabilité de renvoyer 1 dans les deux jeux, donc :

Adv(A) = [Pr[f(X) = 1] - Pr[f(¥) = 1]

Notons également que |Pr[f(X) =0]-Pr[f(Y) =0]| = [1-Pr[f(X) = 1]-1+Pr[f(Y) =1]| =
Adv(A). Donc :

(Adv(A) + Adv(A)) = Adv(A) .

N~

A(f(X), f(Y)) =

On a donc que pour tout distingueur A (a une requéte) : Adv(A) < A(X,Y).

Question 3. Soit (X1,...,Xy) et (Y1,...,Yy) deux listes de variables aléatoires totalement
indépendantes. Montrer que :
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Solution. On fait la démonstration pour k = 2. On en déduit le cas général par récurrence.

1
Al Xa), (11, Y2)) = 2 Z [Pr[X1 = a1] Pr[Xo = as] — Pr[Y1 = a1] Pr[Y2 = a2
a1,a2€AXA
1
<3 > [Pr(Xy = a1]Pr[Xz = ag] — Pr[Xy = ag] Pr Vi = ai|

a1,a2€AXA
+ |Pr[Xs = as] Pr[Y1 = a1] — Pr[Y1 = a1] Pr[Ya = a9]|

IA

1
5 > Pr[Xp=ap] [Pr[X; =] - Pr(¥i = ai]
a1,a2€AXA
+Pr Y] = a1] |Pr [ X2 = ag] — Pr[Ya = ag)|
<A(X, YY) +A(Xe, Ys)

Question 4. Montrer que si A(X,Y) = negl(n), les distributions X et Y sont calculatoire-
ment indistinguables. On supposera pour cela qu’un adversaire s’exécutant en temps t effectue
exactement t requétes indépendantes a la distribution.

Solution. Dans les jeuzr de distingueur l’adversaire a droit a un nombre multiple de requétes.
Les résultats de ces requétes sont des copies indépendantes de X ou de'Y, donc on peut combiner
les questions précédentes.

Un adversaire efficace doit s’exécuter en temps poly(n), donc ne peut faire que poly(n)
requétes. Soit k = poly(n) le nombre de requétes effectuées (on le suppose constant pour simpli-

fier). On a donc :
Adv(A) < A((X1,..., Xg), (Y1,...,Yy)) < EA(X,Y) = poly(n) negl(n) = negl(n)

C’est vrai pour tout adversaire PPT, ce qui nous permet de conclure.

Question 5 (Bonus). Comment gérer le cas d’un adversaire s’exécutant en temps poly(n),
mais faisant un nombre variable de requétes ?

Solution. On remplace A par un adversaire A’ qui exécute A. A chaque étape de temps, A'
fait une requéte et :

o Si A était effectivement en train de faire une requéte, A’ transfére ce résultat a A ;
e Sinon A’ jette le résultat a la poubelle et continue d’exécuter A.

Le nombre de requétes effectué par A" est bien constant. De plus Adv(A) < Adv(A’) car si A
réussit, A" réussit aussi. Donc pour tout adversaire A en temps poly(n) on a bien :

Adv(A) < Adv(A’) < poly(n) A(X,Y) = negl(n)

Théoréme de Shannon

Le but de cet exercice est de prouver le résultat suivant de Shannon.

Theorem 1. Soit KeyGen, Enc, Dec un chiffrement symétrique tel que |M| = |C| = |K|. Le
schéma est parfaitement sur si et seulement si :

1. Toute clé k € K est choisie avec probabilité 1/|KC| par KeyGen
2. Pour tout m € M et tout c € C, il existe une unique clé k € K telle que Enc(m, k) = c.

D’abord, nous justifions que I’hypothese faite sur les espaces est raisonnable.

¥
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Question 6. On rappelle la définition de la sécurité parfaite : pour toute variable aléatoire M,
m etc:
Pr[M = m|Enc(KeyGen, M) = ¢|] = Pr [M = m)]

Montrer que si le chiffrement est correct, on a |C| > |M|; et que si le chiffrement est
parfaitement sur, on a |K| > |C|.

Solution. Si le chiffrement est correct, la fonction Enc(k,-) est injective pour tout k € IC, donc
IC| > |M|. Dans la suite, on note C' = Enc(KeyGen, M) (qui est aussi une variable aléatoire).
Si nous fixons m € M, alors par la propriété de sécurité parfaite Pr[M = m|C =] =
Pr[M = m)|. De plus Pr[M =m|C =¢] = Pr[C =M =m] x Pr[M =m]/Pr[C = ¢], donc
inversement Pr[C = ¢|M = m] = Pr[C = c] > 0 pour tout ¢ (tous les chiffrements sont acces-
sibles).
Donc pour tout m il doit exister une clé qui envoie m sur c, i.e., |K| > |C|.

On va utiliser la définition suivante de la sécurité parfaite :
Un chiffrement symétrique est parfaitement str si, pour tous mi,ms,c € M x

M xC:

kHEE];Gen [Enc(k,m1) =c] = keﬁgcen [Enc(k,m2) =] . (2)

Question 7. Montrer I’équivalence avec lautre définition.

Solution. Premzieére implication. Supposons que pour tous my, mo,c :

P E =c= P Enc(k =
keKel;/Gen[ nc(k’ml) C} keKeI;/Gen[ nc( 7m2) C]

On a, pour toute variable aléatoire M, m et ¢ :

Pr[M = m A Enc(KeyGen, M) = (]
Pr [Enc(KeyGen, M) = ¢

_ Pr[M = m A Enc(KeyGen,m) = c|

N Pr [Enc(KeyGen, M) = ]

Pr [Enc(KeyGen, m) =

Pr [Enc(KeyGen, M) = ¢

Pr[M = m|Enc(KeyGen, M) = ¢| =

=Pr[M = m)|

On montre que :

Pr [Enc(KeyGen, M) = ] = Z Pr [M = m'] Pr [Enc(KeyGen,m) = (]

m/eM

= Z Pr [M = m/] (Pr[Enc(KeyGen,m) = c|) par hypothése
m/eM

= Pr [Enc(KeyGen, m) = (] Z Pr [M = m/]

m/eM

=1

Donc :
Pr[M = m|Enc(KeyGen, M) = ¢| = Pr[M = m)|

Deuxiéeme tmplication. Supposons que pour toute variable aléatoire M, m et c :
Pr[M = m|Enc(KeyGen, M) = ¢| = Pr[M = m)]

Soit my,ma,c et M la distribution uniforme sur {my,mo}. On a :

Pr[M = m|Enc(KeyGen, M) = ¢|] = Pr[M = m,]
Pr[M = mg|Enc(KeyGen, M) = c] = Pr[M = my)]

[N e
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Donc :

Pr[M = m|Enc(KeyGen, M) = ¢|] = Pr [M = mg|Enc(KeyGen, M) = (]
Pr[M = m;| Pr [Enc(KeyGen,m1) =c|  Pr[M = mgy] Pr[Enc(KeyGen, ms) = (]
Pr [Enc(KeyGen, M) = | - Pr [Enc(KeyGen, M) = ¢
Pr [Enc(KeyGen, m) = ¢| = Pr [Enc(KeyGen, mg) = (]

Question 8. Montrer que les conditions 1. et 2. sont suffisantes pour la sécurité parfaite.

Solution. En utilisant la deuzieme définition c’est assez clair.
En effet pour tout m,c : Pry [Enc(k,m) =] = |/1€7| car c’est la probabilité que k (qui est
choisie uniformément au hasard par KeyGen) atteigne la valeur unique telle que Enc(k, m) = c.

Question 9. Montrer le sens inverse de la preuve.

Solution. Soit m € M. Nous savons que pour tout c, il existe au moins une clé k telle que
Enc(m, k) = ¢. Par conséquent :

{Enc(k,m),k € K}| = [C|
mais comme |C| = |KC| par hypothése, on a :
[{Enc(k,m), k € KC}| = [K]|

ce qui donne l'unicité.
On revient ensuite a la propriété de sécurité parfaite. On a :

Pr[M = m]

Pr[M = m|Enc(K, M) = ¢| = Pr[M = m] = Pr [Enc(K, M) = ¢ Pr[Enc(K, M) = ]

M =m]

Donc pour tout m, ¢ : Pr[Enc(K, M) = ¢|M = m| = Pr [Enc(K, M) = ¢| (sur les variables aléatoires
K, du KeyGen, et M, du message). Or il existe exactement une clé k telle que Enc(k,m) = ¢,
donc Pr[Enc(K, M) = ¢|M = m| = Pr[K = k|. Et donc pour toute clé k :

Pr[K = k] = Pr[Enc(K, M) = (]

Ici ¢ est une constante, et Pr[Enc(K, M) = ¢] est donc aussi une constante. Les clés sont donc
toutes utilisées avec la méme probabilité, qui doit donc étre 1/|KC|.

Chiffrement de Vigenere

Le chiffrement de Vigenére sur un alphabet fini strictement ordonné 3 est une version relaxée
et généralisée du OTP, ou la clé peut étre plus petite que les messages considérés, et on utilise
l’addition modulaire au lieu du XOR (qui est ’addition modulo 2). Pour chiffrer / déchiffrer,
on répete la clé (abc — abcabcabe . . .) pour obtenir une clé aussi longue que le message / chiffré,
et on ajoute (modulairement) la clé au message / chiffré, caracteére par caractere.

Question 10. Définir formellement le schéma.

Solution. Définir KeyGen, Enc, Dec. Pour KeyGen, on prend en entrée la longueur du mot, et
on choisit le mot au hasard (par exemple).

Nous considérons le jeu de sécurité suivant sur un schéma de chiffrement II avec un adversaire
A, noté GEAV

¥
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1. A choisit deux messages mg, my de P

2. La clé k est générée par KeyGen, un bit b <= U(0, 1) est choisi

3. ¢ = Enc(my, k) est donné a A

4. A renvoie un bit b’
La sortie du jeu, notée GFAV(A,n) est T si b = b/ et L sinon. On peut donc remarquer que
GFAV(A,n) est une variable aléatoire & valeurs dans {T, 1 }.

Formellement :

Definition 1 (Sécurité EAV). Un schéma de chiffrement symétrique est EAV (secure against ea-
vesdropping) si pour tout adversaire PPT A son avantage Adv®4Y (A) = | Pr [GEAV (A,n) + T]-
1/2] est négligeable en n. Le jeu de sécurité est donné par :

(m(), ml) € M? A(ln)

. k< KeyGen(1™), b+ U(0,1)
. b+ A(Enc(k, my))

. Sib=10" alors T sinon L

—

=W N

Dans la suite, le chiffrement de Vigenere est noté II, et I’alphabet latin 3.
Question 11. Montrer qu’un adversaire A participant au jeu FAV peut retrouver la clé k.

Solution. Il suffit d’appeler le chiffrement sur une entrée contenant un bloc de zéros, de lon-
gueur la taille de la clé (k+ 0 = 0 sur chaque caractére correspondant). L’adversaire choisit
donc deux messages quelconques avec un blos de zéros.

Question 12. Montrer que le chiffrement de Vigenere n’est pas EAV-sir.

Solution. Puisque ’adversaire peut retrouver la clé, il peut déchiffrer, donc distinguer le chif-
frement de mq de celui de my.

Lattaque s’exécute donc ainsi : ladversaire produit deux messages 0|my et 0||m} avec un
bloc de zéros et deux blocs arbitraires différents, le challenger chiffre, l'adversaire retrouve la clé
grace au bloc de zéros, ensuite il déchiffre c, et distingue entre les deu.



