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Quantum Computing Basics

Brief summary of quantum physics

I think I can safely say that nobody understands quantum
mechanics.

– Richard Feynman (1918-1988)

interpreting quantum physics is difficult
good for us: we’re not here to interpret, just to calculate
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Quantum Computing Basics

Brief history of quantum computing

Quantum computing initiated in the 80s with the prospect of
simulating quantum mechanical systems

=⇒ e.g., to understand protein folding

Could it also be used to speed up classical computations?
=⇒ first significant quantum speedups appeared in the 90s

Deutsch, “Quantum theory, the Church-Turing principle and the universal
quantum computer”, Proc. R. Soc. Lond. 1985
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Quantum Computing Basics

Qubits and superposition

A bit is a classical system which can
be in the state 0 or 1.

b = 0 or 1

A qubit is a quantum system with
two basis states |0⟩ and |1⟩.

|ψ⟩ = α |0⟩+ β |1⟩

α and β are complex numbers such
that |α|2 + |β|2 = 1

Measurement
The state is a superposition
Measuring the qubit destroys the state and collapses the
superposition to |0⟩ or |1⟩
|0⟩ is measured with probability |α|2

|1⟩ is measured with probability |β|2
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Quantum Computing Basics

Qubits and superposition (ctd.)

|cat⟩ = 1√
2
| cat is alive⟩+ 1√

2
| cat is dead⟩

any two-state quantum system can be used as a qubit: even a cat
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Quantum Computing Basics

Qubits and entanglement

Two bits can be in the state 00 or 01 or 10 or 11.
Two qubits form a quantum system with 4 basis states
|00⟩ , |01⟩ , |10⟩ , |11⟩

(4-dimensional vector space)

Consider the following state:

|ψ⟩ = 1
2
|00⟩+ 1

2
|01⟩+ 1

2
|10⟩+ 1

2
|11⟩ = 1√

2
(|0⟩+ |1⟩) 1√

2
(|0⟩+ |1⟩)

Measure the first qubit: the second always collapses to 1√
2
(|0⟩+ |1⟩).

=⇒ the two qubits are disentangled
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Quantum Computing Basics

Qubits and entanglement (ctd.)

Consider the following state:

|ψ⟩ = 1√
2
|00⟩+ 1√

2
|11⟩

Measure the first qubit:
if the state collapses to |00⟩: we measure 0 and the other becomes
0 with certainty
if the state collapses to |11⟩: we measure 1 and the other is 1 with
certainty
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Quantum Computing Basics

Qubits and entanglement (ctd.)

Experiments in the 1980s
confirmed the theory

Unfortunately for sci-fi, this
doesn’t allow faster-than-light
communication

It still works if you send the
second qubit to space: its state
will collapse on 0 or 1
depending on the
measurement result

Picture: École polytechnique / Jérémy Barande
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Quantum Computing Basics

Qubits and entanglement (ctd.)

n qubits form a 2n-dimensional quantum system with 2n basis states:

|ψ⟩ = α00..0 |00..0⟩+ α01..0 |01..0⟩+ . . .+ α11..1 |11..1⟩ ∈ C2n

It is (and remains) normalized:
∑

i |αi |2 = 1.

An n-qubit quantum system is described by 2n complex amplitudes. If
the system evolves, we must recompute the 2n amplitudes.

this gets rapidly out of hand for classical computers
this is why quantum computers were proposed in the first place!
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Quantum Computing Basics

Computations

We start from a set of qubits initialized to |00...0⟩
We describe quantum algorithms as a sequence of basic, elementary
quantum gates
The quantum gates modify the current state of the algorithm
Eventually we will measure the state
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Quantum Computing Basics

Starting from classical circuits

Any classical (reversible) circuit can be applied to our qubits
It will just apply in superposition to all possible states

|x⟩ → |f (x)⟩
|x⟩+ |y⟩ → |f (x)⟩+ |f (y)⟩

A quantum computation is a linear operator.
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Quantum Computing Basics

“Quantum parallelism”

Let f : {0, 1}n → {0, 1}m be your favorite function (e.g., SHA-3). There
exists a reversible circuit doing:

x , 0 7→ x , f (x)

i.e. a quantum algorithm:

|x⟩ |0⟩ 7→ |x⟩ |f (x)⟩

Start from a uniform superposition over x : 1√
2n

∑
x∈{0,1}n

|x⟩

 |0⟩

apply f :
1√
2n

∑
x∈{0,1}n

|x⟩ |f (x)⟩
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Quantum Computing Basics

“Quantum parallelism” (ctd.)

1√
2n

∑
x∈{0,1}n

|x⟩ |f (x)⟩

Let’s say we want a preimage of f , i.e., we fix y , and want x such that
f (x) = y . It’s here!

Are we simply computing “all the possibilities” in parallel?

NO
In superposition ̸= in parallel

If we measure the state, we obtain a random x , f (x): this is useless
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Quantum Computing Basics

Adding more quantum operations

We have additional operations that modify the amplitudes.
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Quantum Computing Basics

Summary

The 3 principles of quantum computing:
1 superposition
2 entanglement
3 interference (next slides)

And the 4th one:
Quantum computation is not “doing everything is parallel”
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Quantum Algorithms: Shor and Grover
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Quantum Algorithms: Shor and Grover

The QFT

The “real” quantum stuff happens when we modify the amplitudes.

Something that we really like is the

quantum Fourier transform (QFT)

If you see the amplitudes as some data series, the QFT takes the Fourier
Transform of this series:

The 2n-Quantum Fourier Transform:

∀x ,QFT2n |x⟩ = 1√
2n

∑
y

ωxy |y⟩
(
ω = exp(2iπ/2n)

)
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Quantum Algorithms: Shor and Grover

Shor’s algorithm for factorization

First of all, reduce factorization to order-finding.
Let N ≤ 2n be the number to factor. Select a constant a
Finding r such that ar = 1 mod N allows (w.h.p.) to factor N

(ar/2 − 1)(ar/2 + 1) = 0N

r is solution to a hidden-period problem

Define f (x) = ax mod N. Then for all x , f (x + r) = f (x).
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Quantum Algorithms: Shor and Grover

Shor’s algorithm: step 1

Let’s start with “everything in parallel on a large input space”:

1√
2m

∑
x

|x⟩ |f (x)⟩

Measuring f (x) gives an output value b and collapses:∑
x|f (x)=b

|x⟩

The periodicity intervenes here:∑
x|f (x)=b

|x⟩ = |x0⟩+ |x0 + r⟩+ |x0 + 2r⟩+ . . .
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Quantum Algorithms: Shor and Grover

Shor’s algorithm: step 2

Apply a QFT on this state:

∑
y

ωx0y |y⟩+
∑
y

ω(x0+r)y |y⟩+
∑
y

ω(x0+2r)y |y⟩+ . . .

=
∑
y

ωx0y
(
1 + ωry + ω2ry + . . .

)
|y⟩
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Quantum Algorithms: Shor and Grover

What we obtain (ctd.)

After QFT, the probability to measure y is proportional to:∣∣ωx0y
(
1 + ωry + ω2ry + . . .

)∣∣2 =
∣∣1 + ωry + ω2ry + . . .

∣∣2
It gets bigger when ωry is closer to 1 =⇒ ry

2m closer to an integer.

We measure y such that ry
2m is “close to an integer”.

With sufficient precision, recover r using a classical post-processing.
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Quantum Algorithms: Shor and Grover

What happened?

The Fourier Transform of a periodic sequence gives “peaks” (and
information on the sequence)
We encoded a periodic sequence in the amplitudes
Taking the QFT transforms the amplitudes into “peaks”
By measuring, we get information on the period
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Quantum Algorithms: Shor and Grover

Most common speedup: Grover’s algorithm

Given a large search space:
you can pick a guess
you can test if your guess is “good” with a quantum circuit
the probability to be good is p

=⇒ Grover search runs in time ≃ 1√
p

An important message
If the test is a black box, the quadratic speedup is optimal.

=⇒
√
· speedup of many NP-complete problems, crypto problems, etc.
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Quantum Algorithms vs. Cryptography

Quantum Algorithms vs. Cryptography
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Quantum Algorithms vs. Cryptography

Cryptography in a nutshell

Enable (cheap) secure communications over insecure channels.

Public-key
No shared secret
Key-exchange, signatures. . .
RSA, elliptic curve
cryptography . . .

Secret-key
Shared secret
Block ciphers, stream ciphers,
hash functions. . .
AES, SHA-3 . . .
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Quantum Algorithms vs. Cryptography

Computational hardness

Cryptography is based on conjectured hard computational problems
To decrypt the communication, has to factor large numbers,
or find a secret AES key, etc.
We estimate the time it would take to reach these goals, and ensure
that it’s infeasible
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Quantum Algorithms vs. Cryptography

Example: the RSA cryptosystem

Factoring a 2048-bit RSA public key N = PQ should be infeasible
If you do it, you break RSA
Shor’s algorithm solves factoring in polynomial time

=⇒ and a “small” polynomial: only ≃ 109 quantum operations for
RSA-2048
Same for cryptosystems based on discrete logs (ECC)

=⇒ breaks all public-key crypto used today
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Quantum Algorithms vs. Cryptography

Post-quantum cryptography

Solution: do not use DLP and factoring-based crypto anymore!

Post-quantum crypto = crypto that remains secure in the presence of a
quantum adversary.
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Quantum Algorithms vs. Cryptography

“But the quantum computer does not exist yet!”

=⇒ The communication should remain secret for a time X (50 years?)
=⇒ Changing to post-quantum crypto will take time Y (10 years?)
=⇒ Building a QC will take time Z (30 years?)

“Mosca’s theorem”
If Y + X > Z , you have a problem

Y X

Z

Time
0 Y Z X+Y

Communications
become now

quantum-secure

Communications
between time 0 and Y

are decrypted
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Quantum Algorithms vs. Cryptography

Reasoning about quantum adversaries

Crypto is already about attackers that do not exist
Many attacks are theoretical algorithms which show a weakness,
but which will never run in practice

Upgrading to PQC means just updating the notion of “algorithm”,
and the landscape of attacks
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Quantum Algorithms vs. Cryptography

Conclusion
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Quantum Algorithms vs. Cryptography

Where are we today?

Several competing technologies, giants
(IBM, Google, Rigetti. . . ) and start-ups.

Alice & Bob (cat qubits)
Pasqal (neutral atoms)
Quandela (photonics)

Picture : IBM Research
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Quantum Algorithms vs. Cryptography

Where are we today? (ctd.)

Step 1. physics experiments (check that the theory works) [Done]
Step 2. quantum advantage (do “something” faster than supercomputers)

[Done]
Step 3. perform quantum error correction [In progress] (recent results by

Google)
Step 4. scale up, solve useful problems (physics, chemistry. . . ) with true

quantum advantage [TODO]
Step 5. scale up, break crypto [TODO]
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Quantum Algorithms vs. Cryptography

Where are we today? (ctd.)

Current numbers: ≃ 103 − 104 gates on ≃ 102 − 103 qubits.
...

What we need: ≃ 108 − 109 gates on ≃ 102 − 103 qubits (*)

But current qubits are “physical”: they have lots of errors
To run large-scale computations, we will need to correct the errors

=⇒ first results have been reported, but they are still very preliminary

(*) I’ve updated the numbers since last year!
38/39



Quantum Algorithms vs. Cryptography

Conclusion

Quantum computers are extremely good at solving some specific
problems (e.g., Shor)
. . . and quite good at solving other (less specific) problems (e.g.,
Grover)
. . . and totally useless at solving many other problems!

Quantum computers today are still experimental
Still a long way from breaking crypto

Cryptographers have been unlucky with Shor’s algorithm, but we’re going
to make our cryptography post-quantum. See part 2!
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