Cryptanalysis Part II: Cryptanalysis of Hash Constructions

André Schrottenloher

Inria Rennes Team CAPSULE

Length Extension on Merkle-Dåmgard	Second Preimage on Merkle-Dåmgard	Nostradamus Attack	Conclusion
000	000000	00000	0

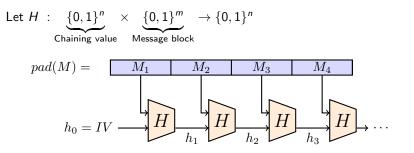
2 Second Preimage on Merkle-Dåmgard

3 Nostradamus Attack

Second Preimage on Merkle-Dåmgard

Nostradamus Attack Conclusion

Merkle-Dåmgard



Fact

If H is collision-resistant, and pad is an appropriate padding scheme, $\mathcal{H} = MD[H]$ is collision-resistant.

000		000000	00000	0
Dre	liminarios			

Collisions

From a given chaining value h, find two blocks x, x' such that H(h, x) = H(h, x'): $\mathcal{O}(2^{n/2})$.

Preimage

From a given chaining value h and target t, find a block x such that H(h, x) = t: $\mathcal{O}(2^n)$.

Multi-target preimage

From a given chaining value h and set of targets T, $|T| = 2^t$, find a block x such that $H(h, x) \in T$: $\mathcal{O}(2^{n-t})$.

 \implies all of this assumes nothing of the function *H*.

Length Extension on Merkle-Dåmgard	Second Preimage on Merkle-Dåmgard	Nostradamus Attack	Conclusion
● O O	000000	00000	0

Second Preimage on Merkle-Dåmgard

Nostradamus Attack Conclusion

Length extension attack

Attack

Given $\mathcal{H}(x)$, where x is unknown, obtain $\mathcal{H}(x \| pad(x) \| y)$ for arbitrary suffix y.

Second Preimage on Merkle-Dåmgard

Nostradamus Attack Conclusion

Length extension attack

Attack

Given $\mathcal{H}(x)$, where x is unknown, obtain $\mathcal{H}(x \| pad(x) \| y)$ for arbitrary suffix y.

- We know the final state after absorbing $x \parallel pad(x)$
- Restart from this state and compute the next chaining values ourselves (incl. padding)

Length	Extension	on	Merkle-Dåmgard
000			

Avoiding this

Second	Preimage	on	Merkle-Dåmgard
00000	000		

Solution

Use a different compression function for the last call.

Length Extension on Merkle-Dåmgard	Second Preimage on Merkle-Dåmgard	Nostradamus Attack	Conclusion
000	000000	00000	0

Second Preimage on Merkle-Dåmgard

Second Preimage on Merkle-Dåmgard

Nostradamus Attack Conclusion

Second preimage attack

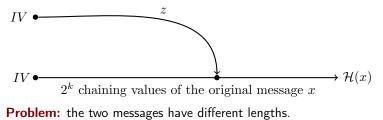
Consider a very long message $x = x_0 || x_1 ... || x_{2^k-1}$, with 2^k chaining values.

Objective

Given
$$x$$
, $\mathcal{H}(x)$, find $y \neq x$ such that $\mathcal{H}(y) = \mathcal{H}(x)$.

If the padding did not **depend on the message length**, this would be easy:

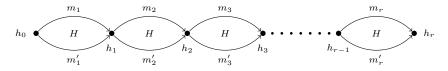
- Find z such that $\mathcal{H}(z)$ falls on a chaining value (time $\mathcal{O}(2^{n-k})$)
- Concatenate z with the rest of the message



Second Preimage on Merkle-Dåmgard

Nostradamus Attack Conclusion

Interlude: multicollisions in MD



- Start from a chaining value h_0
- Find a collision from h_0 : let h_1 be the output
- Find a collision from h_1 : let h_2 be the output
- . . .

Every choice of message $(m_1 \text{ or } m'_1) || (m_2 \text{ or } m'_2) || \dots || (m_r \text{ or } m'_r)$ leads to the same value h_r .

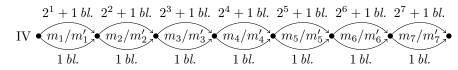
We can compute a 2^r -collision in time $\mathcal{O}(r2^{n/2})$.

How much space do we need to store it?

Length Extension on Merkle-Dåmgard	Second Preimage on Merkle-Dåmgard	Nostradamus Attack	Conclusion
000	000000	00000	0
e 111			

Expandable message

- So far all the messages in the multicollision have the same length.
- New idea: use messages of different block lengths.



- First collision: 1 block vs. $2^1 + 1$ block
- Second collision: 1 block vs. $2^2 + 1$ block
- ...

Theorem

For any $r \leq j < r + 2^r$, we can produce a message (by choosing m_i or m'_i blocks) with output h_r and length *i* blocks. The structure is constructed in time $\tilde{\mathcal{O}}(2^r + 2^{n/2})$.

 \implies multicollision with length control.

Second Preimage on Merkle-Dåmgard

Nostradamus Attack

Conclusion

Time to construct the EM structure

Naively: we need r collisions, the last one between a message of 2^r blocks and a message of 1 block.

 $\implies \mathcal{O}(2^{r+n/2})$ complexity

Second Preimage on Merkle-Dåmgard

Nostradamus Attack

Conclusion

Time to construct the EM structure

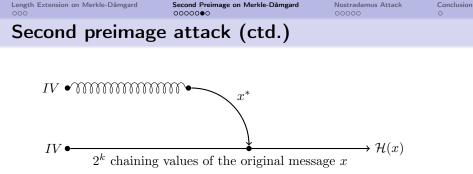
Naively: we need r collisions, the last one between a message of 2^r blocks and a message of 1 block.

 $\implies \mathcal{O}\!\left(2^{r+n/2}
ight)$ complexity

Cleverly

- For each collision of 1 block vs. 2ⁱ + 1 block, we fix the 2ⁱ first block to dummy values.
- Now the total amount of compression function calls is:

$$1+\ldots+2^r+\mathcal{O}\left(r2^{n/2}\right)=\widetilde{\mathcal{O}}\left(2^r+2^{n/2}\right)$$



- 1. construct a 2^k-expandable message: $\widetilde{O}(2^k + 2^{n/2})$ with output h_k
- 2. find x^* such that $H(h_k, x^*)$ is one of the chaining values: $\mathcal{O}(2^{n-k})$
- 3. select in the EM the message having the right length
- Total: $\mathcal{O}(2^k + 2^{n/2}) + \mathcal{O}(2^{n-k})$
- Corresponding message has 2^k blocks (optimal for k = n/2, but long message)

Avoiding this

Second Preimage on Merkle-Dåmgard

Nostradamus AttackConclusion000000

Solution

- Increase the internal state (wide-pipe construction): instead of *n* bits, have 2*n* bits
- At the end, compress the 2n bits into n bits (typically: truncate)

Length Extension on Merkle-Dåmgard	Second Preimage on Merkle-Dåmgard	Nostradamus Attack	Conclusion
000	000000	●0000	0

Nostradamus Attack

Nostradamus attack scenario

Nostradamus says: "I can predict the lottery output".

- Nostradamus publishes a hash output h
- After the lottery outputs x, Nostradamus shows that $h = \mathcal{H}(x||s)$ where s is an arbitrary (garbage) suffix

Nostradamus concludes: "I have correctly predicted x".

Chosen target forced prefix pre-image resistance: Given x and h, find s such that $h = \mathcal{H}(x||s)$.

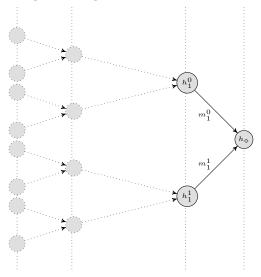
For Merkle-Dåmgard, CTFP is **easier** than preimage.

Second Preimage on Merkle-Dåmgard

Nostradamus Attack Conclusion

The diamond structure

Find many messages leading to the same hash value.



Length Exte	nsion on Merkle-Dåmg	ard Second Preimag	ge on Merkle-Dån	ngard Nostradamus Attack	Conclusion O
		•	/ · · ·		

The diamond structure (ctd.)

- 1. Start from 2^k random chaining values.
- 2. Find message pairs which map the 2^k chaining values to 2^{k-1} (many collisions)
- 3. Find message pairs to map the 2^{k-1} values to 2^{k-2}

4. ...

Naive complexity: $\mathcal{O}(2^k \times 2^{n/2})$.

Length Exten	sion on Merkle-Dåmgard	Second Preimage on Merkle-Dåmgard	Nostradamus Attack 000●0	Conclusion O
		(

The diamond structure (ctd.)

- 1. Start from 2^k random chaining values.
- 2. Find message pairs which map the 2^k chaining values to 2^{k-1} (many collisions)
- 3. Find message pairs to map the 2^{k-1} values to 2^{k-2}

```
4. . . .
```

Naive complexity: $\mathcal{O}(2^k \times 2^{n/2})$.

Better complexity:

- At each level, select $2^{n/2+k/2}$ extensions $(2^{n/2-k/2}$ per current value).
- Expect $(2^{n/2+k/2})^2 2^{-n} = 2^k$ collisions (enough to form all collision pairs).

Result: $\widetilde{\mathcal{O}}(2^{k/2+n/2})$.

Length Extension on Merkle-Dåmgard	Second Preimage on Merkle-Dåmgard	Nostradamus Attack 0000●	Conclusion O
The herding atta	ck		

- 1. Nostradamus creates a diamond structure, publishes the output h
- 2. On challenge x, Nostradamus finds a message m such that h(x, m) is in the first level of the diamond

Complexity: $2^{n/2+k/2} + 2^{n-k}$, balanced with $k = n/3 \implies \mathcal{O}(2^{2n/3})$.

Length Extension on Merkle-Dåmgard	Second Preimage on Merkle-Dåmgard	Nostradamus Attack	Conclusion •
Conclusion			

- All of these attacks are **generic**: they are limitations from the constructions, not the primitives.
- Basic Merkle-Dåmgard has many hurdles: exercise caution
- Modern hash functions (SHA-3) are more often built using **Sponges** than MD