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Organization

Slides, TP sheets and code (only for this part of the course):
andreschrottenloher.github.io/pages/teaching.html

Questions at:
andre(dot)schrottenloher(at)inria(dot)fr
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Contents

1. Security of hash functions (collisions, preimages, birthday paradox,
properties of random functions)

2. Cryptanalysis of hash constructions (attacks on Merkle-Damgård)
3. Cryptanalysis of encryption modes, security of MACs and sponges
4. Stream ciphers and their cryptanalysis
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Introduction
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What is cryptanalysis?

• “Breaking” cryptosystems?
• More generally: evaluating the security

• Looking for an unpredicted behavior of the scheme;
• Looking for a better algorithm to attack it.

The situation differs between:
• asymmetric and symmetric crypto;
• the provable setting (modes of operation) & the unprovable setting

(primitives).
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Remark

• Most often, our “attacks” are infeasible (and we know that)
• They are infeasible because of the resources (time / memory) or the

attacker scenario is (looks?) impractical (related-key, etc.)

• We’re at the lowest level of cybersecurity, so we cannot afford the
smallest weakness

• Besides, weaknesses have a tendency to become worse over time.
Important principles:

Security =

∫ +∞

0
Cryptanalysis effort dt

“We can only gain confidence through a continuous (public!)
cryptanalysis effort”

d(attack complexity)

dt
< 0

“An attack will only improve over time”
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Security levels

Security level

• A security level is expressed in “bits of security”.
• 120 bits of security ' the attack requires 2120 operations to execute.

What is feasible “in practice”?

• 1000 ' 210

• 4GHz ' 232 operations per second on a CPU
• multi-core CPUs

With massively parallelized GPUs: 260 is accessible.

The Bitcoin network computes 290 SHA-256 per year using a massive
amount of ASICs.

However computing 2128 hashes would require more energy than
vaporizing all the Earth’s oceans =⇒ 128 bits of security is good.
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Hash Function Security
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Hash functions

A hash function is a public function that takes a variable-length
message and outputs a fixed-length digest: H : {0, 1}∗ → {0, 1}n.

The “ideal” behavior of a hash function is to look like a completely
random function {0, 1}∗ → {0, 1}n.

This lecture
• Focus on compression functions and / or small-range hashing:

the input has size n + m.
• Typically used with the Merkle-Dåmgard domain extender to

produce large-scale hash functions.

The hash function output should not give any information on the input.
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Preimage resistance

Fix H : {0, 1}∗ → {0, 1}n.

Preimage resistance
For t ← {0, 1}n, it should be difficult to find m such that t = H(m).
• By brute force, this takes time O(2n) (to succeed with constant

probability)
• So it should take time O(2n)

Example: password authentication.
• One stores only H(password).
• An attacker having access to the database cannot find the

passwords.
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Second preimage resistance

Fix H : {0, 1}∗ → {0, 1}n.

For x ← {0, 1}m, it should be difficult to find y 6= x such that
H(y) = H(x).
• By brute force, this takes time O(2n) (to succeed with constant

probability)

Example: hash-and-sign signatures
• Sign H(message)
• Integrity of files
• One cannot forge: find another file with a valid signature
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Collision resistance

Collision resistance
• Producing a collision (pair x 6= y such that H(x) = H(y)) should

take time O
(
2n/2

)
(why? next slides)

This is the same as long as the input size is ≥ n bits.
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Chosen-prefix collisions

Fix p1, p2 ∈ {0, 1}m, we look for a collision of the form:

H(p1‖m1) = H(p2‖m2)

• Yields practical attacks: forgery of certificates, malicious GPG /
SSH keys

• Flame malware using chosen-prefix collisions on MD5

14/35



Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

Some examples

MD5 (broken)
• 128-bit hash (RFC 1321, Rivest, 1992)
• Collisions found (Wang, Yu, 2005)
• Forgery of certificates (Stevens et al., 2009)

SHA-0 (broken)
• 160-bit hash (NSA, 1993)
• Collisions (theoretical) in 1998 (Joux, Chabaud)

SHA-1 (broken)
• 160-bit hash
• Theoretical collisions in 2005 (Wang et al.)
• Practical collisions in 2017 (Stevens et al., 2009)
• Chosen-prefix collisions (Leurent, Peyrin, 2020)
• Still used a lot . . .
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Current standards

SHA-2
• Published by NSA in 2001
• Family of hash functions of 224, 256, 384, 512 bits

SHA-3
• a.k.a. Keccak, winner of an open competition organized by NIST
• Sponge function, published in 2015
• Outputs of 224, 256, 384, 512 bits
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On the existence of collisions / preimages

There exists collisions & preimages (the message space is much bigger
than the hash space).

There exists an algorithm that returns in constant time a collision for
any hash function.

=⇒ however, we don’t know how to write it down.
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Random Functions
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Random functions

• What is a truly random function? It’s a function that we picked at
random.

• Choice 1: pick the entire function at random before running the
algorithm;

• Choice 2: (“lazy”) build the table of the function by picking random
outputs whenever needed.

=⇒ these two cases are equivalent.

For a random function {0, 1}∗ → {0, 1}n, (second) preimages can be
found in time O(2n). This is tight.

=⇒ a good hash function should offer the same guarantee.
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Interlude: birthday paradox

Lemma
Let y1, . . . , y` be random (uniform) samples in a set of size N. Then
there are two distinct i , j such that yi = yj :
• With prob. at most `2/2N
• With prob. at least `(`−1)

4N if ` ≤
√
2N

Intuition:
• Each pair has probability 1/N of forming a collision
• There are `2/2 pairs =⇒ upper bound
• But they are not independent
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Interlude: birthday paradox (ctd.)
Write NoColli the event “no collision among y1, . . . , yi .”

Pr [NoColl`] = Pr [NoColl1]·Pr [NoColl2|NoColl1] · · ·Pr [NoColl`|NoColl`−1] .

Also: Pr [NoColl1] = 1, and Pr [NoColli+1|NoColli ] = 1− i/N (the new
element must be different from the i previous ones)

=⇒ Pr [NoColl`] =
`−1∏
i=1

(1− i/N)

Now we do some bounding: ∀i , 1− i/N ≤ e−i/N :

Pr [NoColl`] ≤ e−
∑`−1

i=1 i/N = e−`(`−1)/2N .

And for x < 1, 1− x/2 ≥ e−x :

Pr [Coll ] = 1− Pr [NoColl`] ≥ 1− e−`(`−1)/2N ≥ `(`− 1)

4N
.
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Interlude: birthday paradox (ctd.)

The average number of samples to pick before a collision occurs is:√
π/2 · 2n/2

Proof:

E(nb samples) =
∑
`>0

Pr [NoColl`] '
∑
`>0

e−`
2/2n+1

'
∫ +∞

0
e−x

2/2n+1
dx

=
√
π/2 · 2n/2 .
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Random function collisions

Naive algorithm:
1. pick O

(
2n/2

)
random inputs x

2. evaluate them and put the (H(x), x) pairs in a hash table
3. sort by output and find a collision

=⇒ we have an algorithm in time O
(
2n/2

)
, memory O

(
2n/2

)
to find

collisions.

For a random function {0, 1}∗ → {0, 1}n, collisions can be found in
time O

(
2n/2

)
. This is tight.

=⇒ a good hash function should offer the same guarantee.
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Multicollisions

An `-collision of H is a tuple of ` distinct entries: x1, . . . , x` such that
H(x1) = . . . = H(x`).

For a random function {0, 1}∗ → {0, 1}n, `-collisions can be found in
time O

(
2

`−1
` n
)
. This is tight.

Algorithm: pick 2
`−1
` n elements at random =⇒ 2(`−1)n tuples =⇒ one

of them satisfies the multicollision property.
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Pollard’s Rho
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A chain

• Consider H : {0, 1}n → {0, 1}n (if the input domain is too large, fix
some of the input).

• Take x0 at random in {0, 1}n

Evaluate:
x1 = H(x0), x2 = H(x1), . . . , xi := H i (x)

Fact
The chain cannot be infinite. There exists some i 6= j such that
H i (x) = H j(x).
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(Pollard’s) Rho

x0 x1 x2 x3 x4

x5

x6

x7

x8

x9

x10

x11

Birthday property!

• The first pair i , j such that H i (x) = H j(x) has i = O
(
2n/2

)
and

j = O
(
2n/2

)
;

• j = i + ` where ` is the cycle length, i the tail length;
• this gives a collision.
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Floyd’s* cycle-finding algorithm

Create two chains:
• Tortoise: xi = H i (x)
• Hare: x2i = H2i (y)

Iterate until Tortoise = Hare: xi = x2i .

Fact
• The first i such that xi = x2i is O

(
2n/2

)
.

• This i is somewhere on the cycle.

*Attributed to Floyd by Knuth, but nobody knows.
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Floyd’s cycle-finding algorithm

Goal: find the top of the ρ.

• i is somewhere on the cycle: i < t + ` where t is the tail and ` the
cycle length

• x2i = xi =⇒ 2i = i + k` =⇒ i = k` for some k

Create two new chains:
• xj = H j(x) (restarting from x)
• yj = H j+2i (x) (restarting from the Hare’s position)

Iterate until xj = yj ⇐⇒ H j(x) = H j+2i (x)

Here j is the top of the ρ!
=⇒ retrieve the values before: H(H j−1(x)) = H(H j+2i−1(x)) is a
collision.

Another loop is necessary if you’re looking for the cycle length.
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Summary

Input: starting point x0
Output: a collision of H

1: Initialize: x ← x0, y ← x0
2: repeat
3: x ← H(x), y ← H2(y)
4: until x = y
5: Restart: x ← x0
6: repeat
7: x ′ ← x , y ′ ← y
8: x ← H(x), y ← H(y)
9: until x = y

10: return x ′, y ′

O
(
2n/2

)
time and small memory.
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Random Function vs. Random
Permutation
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The graph of a random function
H : {0, 1}n → {0, 1}n:

• There is a large component of size ' 2n+1/3: a large cycle of length√
π2n−3, with O

(
2n/2

)
trees of size O

(
2n/2

)
attached to it

• There are O(log n) small components of negligible size, with small
cycles
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Finding a small cycle

Some cryptanalyses require small cycles of H (of length D � 2n/2):
• Take a random starting point
• Build a chain
• Iterate until ≥ D evaluations
• Restart

We will collide on the chain with probability ' D2

2n =⇒ redo 2n

D2 times
=⇒ total time O(2n/D).
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The graph of a random permutation

Π : {0, 1}n → {0, 1}n:

• There are only cycles: the largest one is of size O(2n)
• There are small cycles of negligible size
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Distinguishing

To distinguish a random function from a random permutation, use the
Tortoise-Hare algorithm.
• If the cycle is not found after O

(
2n/2

)
iterates, conclude that this is

a permutation
• This algorithm is tight
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