Introduction	Hash Function Security	Random Functions	Pollard's Rho	Random Function vs. Random Permutation
Orgar	nization			

Slides, TP sheets and code (only for this part of the course): andreschrottenloher.github.io/pages/teaching.html

Questions at: andre(dot)schrottenloher(at)inria(dot)fr

Introduction 0000	Hash Function Security	Random Functions	Pollard's Rho	Random Function vs. Random Permutation
Conte	nts			

- 1. Security of hash functions (collisions, preimages, birthday paradox, properties of random functions)
- 2. Cryptanalysis of hash constructions (attacks on Merkle-Damgård)
- 3. Cryptanalysis of encryption modes, security of MACs and sponges
- 4. Stream ciphers and their cryptanalysis

Cryptanalysis Part I: Collisions and random functions

André Schrottenloher

Inria Rennes Team CAPSULE

Introduction	Hash Function Security	Random Functions	Pollard's Rho	Random Function vs. Random Permutation
0000	00000000	000000	000000	00000

- **2** Hash Function Security
- **3** Random Functions

5 Random Function vs. Random Permutation

Introduction	Hash Function Security	Random Functions	Pollard's Rho	Random Function vs. Random Permutation
●000	00000000	0000000	000000	00000

Introduction

Introduction	Hash Function Security	Random Functions	Pollard's Rho	Random Function vs. Random Permutation
0000	00000000	0000000	000000	00000
What	is cryptana	alvsis?		

- "Breaking" cryptosystems?
- More generally: evaluating the security
- Looking for an **unpredicted** behavior of the scheme;
- Looking for a better algorithm to attack it.

The situation differs between:

- asymmetric and symmetric crypto;
- the provable setting (modes of operation) & the unprovable setting (primitives).

Introduction	Hash Function Security	Random Functions	Pollard's Rho	Random Function vs. Random Permutation
0000	00000000	0000000	000000	00000
Rema	rk			

- Most often, our "attacks" are **infeasible** (and we know that)
- They are infeasible because of the resources (time / memory) or the attacker scenario is (looks?) impractical (related-key, etc.)
- We're at the lowest level of cybersecurity, so we cannot afford the smallest weakness

• Besides, weaknesses have a tendency to become worse over time. Important principles:

Security =
$$\int_0^{+\infty}$$
 Cryptanalysis effort dt

"We can only gain confidence through a continuous (public!) cryptanalysis effort"

$$\frac{d(\text{attack complexity})}{dt} < 0$$

"An attack will only improve over time"

Introduction	Hash Function Security	Random Functions	Pollard's Rho	Random Function vs. Random Permutation
Securi	ty levels			

Security level

- A security level is expressed in "bits of security".
- 120 bits of security \simeq the attack requires 2^{120} operations to execute.

What is feasible "in practice"?

- $1000 \simeq 2^{10}$
- + $4GHz \simeq 2^{32}$ operations per second on a CPU
- multi-core CPUs

With massively parallelized GPUs: 2⁶⁰ is accessible.

The Bitcoin network computes 2^{90} SHA-256 per year using a massive amount of ASICs.

However computing 2^{128} hashes would require more energy than vaporizing all the Earth's oceans \implies 128 bits of security is good.

Introduction	Hash Function Security	Random Functions	Pollard's Rho	Random Function vs. Random Permutation
0000	0000000	000000	000000	00000

Hash Function Security

Introduction 0000	Hash Function Security ○●○○○○○○○	Random Functions	Pollard's Rho	Random Function vs. Random Permutation
Hash	functions			

A hash function is a public function that takes a variable-length message and outputs a fixed-length digest: $H : \{0,1\}^* \to \{0,1\}^n$.

The "ideal" behavior of a hash function is to look like a completely random function $\{0,1\}^* \to \{0,1\}^n$.

This lecture

- Focus on **compression functions** and / or **small-range hashing**: the input has size n + m.
- Typically used with the Merkle-Dåmgard domain extender to produce large-scale hash functions.

The hash function output should not give any information on the input.

Introduction	Hash Function Security	Random Functions	Pollard's Rho	Random Function vs. Random Permutation		
0000	00000000	0000000	000000	00000		
Preimage resistance						

Fix $H : \{0,1\}^* \to \{0,1\}^n$.

Preimage resistance

For $t \leftarrow \{0,1\}^n$, it should be difficult to find *m* such that t = H(m).

- By brute force, this takes time $\mathcal{O}(2^n)$ (to succeed with constant probability)
- So it should take time $\mathcal{O}(2^n)$

Example: password authentication.

- One stores only *H*(password).
- An attacker having access to the database cannot find the passwords.

Secon	d preimage	resistanc	°e	
0000	00000000	0000000	000000	00000
Introduction	Hash Function Security	Random Functions	Pollard's Rho	Random Function vs. Random Permutation

Fix $H : \{0,1\}^* \to \{0,1\}^n$.

For $x \leftarrow \{0,1\}^m$, it should be difficult to find $y \neq x$ such that H(y) = H(x).

• By brute force, this takes time $\mathcal{O}(2^n)$ (to succeed with constant probability)

Example: hash-and-sign signatures

- Sign *H*(message)
- Integrity of files
- One cannot forge: find another file with a valid signature

0000		0000000	000000	00000
Collisi	on resistan	се		

Collision resistance

Producing a collision (pair x ≠ y such that H(x) = H(y)) should take time O(2^{n/2}) (why? next slides)

This is the same as long as the input size is $\geq n$ bits.

Chosen-prefix collisions						
0000	00000000	0000000	000000	00000		
Introduction	Hash Function Security	Random Functions	Pollard's Rho	Random Function vs. Random Permutation		

Fix $p_1, p_2 \in \{0, 1\}^m$, we look for a collision of the form:

 $H(p_1 || m_1) = H(p_2 || m_2)$

- Yields practical attacks: forgery of certificates, malicious GPG / SSH keys
- Flame malware using chosen-prefix collisions on MD5

Introduction	Hash Function Security	Random Functions	Pollard's Rho	Random Function vs. Random Permutation
Some	examples			

MD5 (broken)

- 128-bit hash (RFC 1321, Rivest, 1992)
- Collisions found (Wang, Yu, 2005)
- Forgery of certificates (Stevens et al., 2009)

SHA-0 (broken)

- 160-bit hash (NSA, 1993)
- Collisions (theoretical) in 1998 (Joux, Chabaud)

SHA-1 (broken)

- 160-bit hash
- Theoretical collisions in 2005 (Wang et al.)
- Practical collisions in 2017 (Stevens et al., 2009)
- Chosen-prefix collisions (Leurent, Peyrin, 2020)
- Still used a lot ...

Introduction	Hash Function Security	Random Functions	Pollard's Rho	Random Function vs. Random Permutation			
0000	0000000000	0000000	000000	00000			
Current standards							

SHA-2

- Published by NSA in 2001
- Family of hash functions of 224, 256, 384, 512 bits

SHA-3

- a.k.a. Keccak, winner of an open competition organized by NIST
- Sponge function, published in 2015
- Outputs of 224, 256, 384, 512 bits

There exists collisions & preimages (the message space is much bigger than the hash space).

There **exists** an algorithm that returns in **constant time** a collision for **any** hash function.

⇒ however, we don't know how to write it down.

Introduction	Hash Function Security	Random Functions	Pollard's Rho	Random Function vs. Random Permutation
0000	00000000	000000	000000	00000

Random Functions

Introduction	Hash Function Security	Random Functions	Pollard's Rho	Random Function vs. Random Permutation
Rando	om functior	าร		

- What is a **truly random function**? It's a function that we picked at random.
- **Choice 1:** pick the entire function at random before running the algorithm;
- **Choice 2:** ("lazy") build the table of the function by picking random outputs whenever needed.
- \implies these two cases are equivalent.

For a random function $\{0,1\}^* \to \{0,1\}^n$, (second) preimages can be found in time $\mathcal{O}(2^n)$. This is **tight**.

 \implies a good hash function should offer the same guarantee.

Lemma

Let y_1, \ldots, y_ℓ be random (uniform) samples in a set of size N. Then there are two distinct i, j such that $y_i = y_i$:

- With prob. at most $\ell^2/2N$
- With prob. at least $\frac{\ell(\ell-1)}{4N}$ if $\ell \leq \sqrt{2N}$

Intuition:

- Each pair has probability 1/N of forming a collision
- There are $\ell^2/2$ pairs \implies upper bound
- But they are not independent

Write *NoColl_i* the event "no collision among y_1, \ldots, y_i ."

 $\Pr[\textit{NoColl}_{\ell}] = \Pr[\textit{NoColl}_{1}] \cdot \Pr[\textit{NoColl}_{2} | \textit{NoColl}_{1}] \cdots \Pr[\textit{NoColl}_{\ell} | \textit{NoColl}_{\ell-1}] .$

Also: $\Pr[NoColl_1] = 1$, and $\Pr[NoColl_{i+1}|NoColl_i] = 1 - i/N$ (the new element must be different from the *i* previous ones)

$$\implies$$
 Pr[NoColl_l] = $\prod_{i=1}^{\ell-1} (1 - i/N)$

Now we do some bounding: $\forall i, 1 - i/N \le e^{-i/N}$:

$$\Pr[NoColl_{\ell}] \le e^{-\sum_{i=1}^{\ell-1} i/N} = e^{-\ell(\ell-1)/2N}$$

And for x < 1, $1 - x/2 \ge e^{-x}$:

$$\Pr[Coll] = 1 - \Pr[NoColl_{\ell}] \ge 1 - e^{-\ell(\ell-1)/2N} \ge \frac{\ell(\ell-1)}{4N}$$

The average number of samples to pick before a collision occurs is:

 $\sqrt{\pi/2} \cdot 2^{n/2}$

Proof:

$$\begin{split} \mathbb{E}(\mathsf{nb samples}) &= \sum_{\ell > 0} \mathsf{Pr}\left[\mathit{NoColl}_{\ell}\right] \simeq \sum_{\ell > 0} e^{-\ell^2/2^{n+1}} \simeq \int_0^{+\infty} e^{-x^2/2^{n+1}} dx \\ &= \sqrt{\pi/2} \cdot 2^{n/2} \hspace{0.1cm}. \end{split}$$

Rando	m function	collision	5	
0000	000000000		000000	00000
Induced continue	Hash Europian Convitu	Dondom Eurotions	Delland's Dhe	Rendem Eunstien us Rendem Demoutetien

Naive algorithm:

- 1. pick $\mathcal{O}(2^{n/2})$ random inputs x
- 2. evaluate them and put the (H(x), x) pairs in a hash table
- 3. sort by output and find a collision

 \implies we have an algorithm in time $\mathcal{O}(2^{n/2})$, memory $\mathcal{O}(2^{n/2})$ to find collisions.

For a random function $\{0,1\}^* \to \{0,1\}^n$, collisions can be found in time $\mathcal{O}(2^{n/2})$. This is tight.

 \implies a good hash function should offer the same guarantee.

Introduction	Hash Function Security	Random Functions 000000●	Pollard's Rho	Random Function vs. Random Permutation
Multic	collisions			

An ℓ -collision of H is a tuple of ℓ distinct entries: x_1, \ldots, x_ℓ such that $H(x_1) = \ldots = H(x_\ell)$.

For a random function $\{0,1\}^* \to \{0,1\}^n$, ℓ -collisions can be found in time $\mathcal{O}\left(2^{\frac{\ell-1}{\ell}n}\right)$. This is **tight**.

Algorithm: pick $2^{\frac{\ell-1}{\ell}n}$ elements at random $\implies 2^{(\ell-1)n}$ tuples \implies one of them satisfies the multicollision property.

Introduction	Hash Function Security	Random Functions	Pollard's Rho	Random Function vs. Random Permutation
0000	00000000	0000000	00000	00000

Pollard's Rho

Introduction	Hash Function Security	Random Functions	Pollard's Rho O●OOOO	Random Function vs. Random Permutation
A chai	n			

- Consider $H : \{0,1\}^n \to \{0,1\}^n$ (if the input domain is too large, fix some of the input).
- Take x_0 at random in $\{0,1\}^n$

Evaluate:

$$x_1 = H(x_0), x_2 = H(x_1), \ldots, x_i := H^i(x)$$

Fact

The chain **cannot be infinite**. There exists some $i \neq j$ such that $H^i(x) = H^j(x)$.

Introduction	Hash Function Security	Random Functions	Pollard's Rho ○○●○○○	Random Function vs. Random Permutation
(Polla	rd's) Rho			

Birthday property!

- The first pair i, j such that $H^i(x) = H^j(x)$ has $i = \mathcal{O}(2^{n/2})$ and $j = \mathcal{O}(2^{n/2})$;
- $j = i + \ell$ where ℓ is the cycle length, *i* the tail length;
- this gives a **collision**.

Floyd's	* cycle-fin	ding algo	orithm	
Introduction	Hash Function Security	Random Functions	Pollard's Rho 000●00	Random Function vs. Random Permutation

Create two chains:

- Tortoise: $x_i = H^i(x)$
- Hare: $x_{2i} = H^{2i}(y)$

Iterate until **Tortoise = Hare**: $x_i = x_{2i}$.

Fact

- The first *i* such that $x_i = x_{2i}$ is $\mathcal{O}(2^{n/2})$.
- This *i* is somewhere on the cycle.

^{*}Attributed to Floyd by Knuth, but nobody knows.

0000	OOOOOOOOOO	Random Functions	Pollard's Rho 0000€0	Random Function vs. Random Permutation		
Floyd's cycle-finding algorithm						

Goal: find the top of the ρ .

- *i* is somewhere on the cycle: $i < t + \ell$ where *t* is the tail and ℓ the cycle length
- $x_{2i} = x_i \implies 2i = i + k\ell \implies i = k\ell$ for some k

Create two new chains:

- $x_j = H^j(x)$ (restarting from x)
- $y_j = H^{j+2i}(x)$ (restarting from the Hare's position)

Iterate until $x_j = y_j \iff H^j(x) = H^{j+2i}(x)$

Here *j* is the top of the ρ !

 \implies retrieve the values before: $H(H^{j-1}(x)) = H(H^{j+2i-1}(x))$ is a collision.

Another loop is necessary if you're looking for the cycle length.

Introduction	Hash Function Security	Random Functions	Pollard's Rho 00000●	Random Function vs. Random Permutation
Summ	ary			

Input: starting point *x*₀ **Output:** a collision of H 1: Initialize: $x \leftarrow x_0, y \leftarrow x_0$ 2: repeat 3: $x \leftarrow H(x), y \leftarrow H^2(y)$ 4: until x = y5: Restart: $x \leftarrow x_0$ 6: repeat 7: $x' \leftarrow x, y' \leftarrow y$ 8: $x \leftarrow H(x), y \leftarrow H(y)$ 9: until x = y10: return x', y'

 $\mathcal{O}(2^{n/2})$ time and small memory.

Introduction	Hash Function Security	Random Functions	Pollard's Rho	Random Function vs. Random Permutation
0000	00000000	0000000	000000	0000

Random Function vs. Random Permutation

The graph of a random function

- There is a large component of size $\simeq 2^{n+1}/3$: a large cycle of length $\sqrt{\pi 2^{n-3}}$, with $\mathcal{O}(2^{n/2})$ trees of size $\mathcal{O}(2^{n/2})$ attached to it
- There are $\mathcal{O}(\log n)$ small components of negligible size, with small cycles

Introduction	Hash Function Security	Random Functions	Pollard's Rho	Random Function vs. Random Permutation	
0000	00000000	0000000	000000	00000	
Finding a secold scale					

Finding a small cycle

Some cryptanalyses require small cycles of H (of length $D \ll 2^{n/2}$):

- Take a random starting point
- Build a chain
- Iterate until $\geq D$ evaluations
- Restart

We will collide on the chain with probability $\simeq \frac{D^2}{2^n} \implies$ redo $\frac{2^n}{D^2}$ times

 \implies total time $\mathcal{O}(2^n/D)$.

Introduction	Hash Function Security	Random Functions	Pollard's Rho	Random Function vs. Random Permutation

The graph of a random permutation

 Π : $\{0,1\}^n \rightarrow \{0,1\}^n$:

- There are only cycles: the largest one is of size $\mathcal{O}(2^n)$
- There are small cycles of negligible size

Introduction	Hash Function Security	Random Functions	Pollard's Rho	Random Function vs. Random Permutation ○○○○●
Disting	guishing			

To distinguish a random function from a random permutation, **use the Tortoise-Hare algorithm**.

- If the cycle is not found after $\mathcal{O}\bigl(2^{n/2}\bigr)$ iterates, conclude that this is a permutation
- This algorithm is tight