
Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

Organization

Slides, TP sheets and code (only for this part of the course):
andreschrottenloher.github.io/pages/teaching.html

Questions at:
andre(dot)schrottenloher(at)inria(dot)fr

1/35

andreschrottenloher.github.io/pages/teaching.html

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

Contents

1. Security of hash functions (collisions, preimages, birthday paradox,
properties of random functions)

2. Cryptanalysis of hash constructions (attacks on Merkle-Damgård)
3. Cryptanalysis of encryption modes, security of MACs and sponges
4. Stream ciphers and their cryptanalysis

2/35

Cryptanalysis
Part I: Collisions and random functions

André Schrottenloher

Inria Rennes
Team CAPSULE

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

1 Introduction

2 Hash Function Security

3 Random Functions

4 Pollard’s Rho

5 Random Function vs. Random Permutation

4/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

Introduction

5/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

What is cryptanalysis?

• “Breaking” cryptosystems?
• More generally: evaluating the security

• Looking for an unpredicted behavior of the scheme;
• Looking for a better algorithm to attack it.

The situation differs between:
• asymmetric and symmetric crypto;
• the provable setting (modes of operation) & the unprovable setting

(primitives).

6/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

Remark

• Most often, our “attacks” are infeasible (and we know that)
• They are infeasible because of the resources (time / memory) or the

attacker scenario is (looks?) impractical (related-key, etc.)

• We’re at the lowest level of cybersecurity, so we cannot afford the
smallest weakness

• Besides, weaknesses have a tendency to become worse over time.
Important principles:

Security =

∫ +∞

0
Cryptanalysis effort dt

“We can only gain confidence through a continuous (public!)
cryptanalysis effort”

d(attack complexity)

dt
< 0

“An attack will only improve over time”
7/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

Security levels

Security level

• A security level is expressed in “bits of security”.
• 120 bits of security ' the attack requires 2120 operations to execute.

What is feasible “in practice”?

• 1000 ' 210

• 4GHz ' 232 operations per second on a CPU
• multi-core CPUs

With massively parallelized GPUs: 260 is accessible.

The Bitcoin network computes 290 SHA-256 per year using a massive
amount of ASICs.

However computing 2128 hashes would require more energy than
vaporizing all the Earth’s oceans =⇒ 128 bits of security is good.

8/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

Hash Function Security

9/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

Hash functions

A hash function is a public function that takes a variable-length
message and outputs a fixed-length digest: H : {0, 1}∗ → {0, 1}n.

The “ideal” behavior of a hash function is to look like a completely
random function {0, 1}∗ → {0, 1}n.

This lecture
• Focus on compression functions and / or small-range hashing:

the input has size n + m.
• Typically used with the Merkle-Dåmgard domain extender to

produce large-scale hash functions.

The hash function output should not give any information on the input.

10/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

Preimage resistance

Fix H : {0, 1}∗ → {0, 1}n.

Preimage resistance
For t ← {0, 1}n, it should be difficult to find m such that t = H(m).
• By brute force, this takes time O(2n) (to succeed with constant

probability)
• So it should take time O(2n)

Example: password authentication.
• One stores only H(password).
• An attacker having access to the database cannot find the

passwords.

11/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

Second preimage resistance

Fix H : {0, 1}∗ → {0, 1}n.

For x ← {0, 1}m, it should be difficult to find y 6= x such that
H(y) = H(x).
• By brute force, this takes time O(2n) (to succeed with constant

probability)

Example: hash-and-sign signatures
• Sign H(message)
• Integrity of files
• One cannot forge: find another file with a valid signature

12/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

Collision resistance

Collision resistance
• Producing a collision (pair x 6= y such that H(x) = H(y)) should

take time O
(
2n/2

)
(why? next slides)

This is the same as long as the input size is ≥ n bits.
13/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

Chosen-prefix collisions

Fix p1, p2 ∈ {0, 1}m, we look for a collision of the form:

H(p1‖m1) = H(p2‖m2)

• Yields practical attacks: forgery of certificates, malicious GPG /
SSH keys

• Flame malware using chosen-prefix collisions on MD5

14/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

Some examples

MD5 (broken)
• 128-bit hash (RFC 1321, Rivest, 1992)
• Collisions found (Wang, Yu, 2005)
• Forgery of certificates (Stevens et al., 2009)

SHA-0 (broken)
• 160-bit hash (NSA, 1993)
• Collisions (theoretical) in 1998 (Joux, Chabaud)

SHA-1 (broken)
• 160-bit hash
• Theoretical collisions in 2005 (Wang et al.)
• Practical collisions in 2017 (Stevens et al., 2009)
• Chosen-prefix collisions (Leurent, Peyrin, 2020)
• Still used a lot . . .

15/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

Current standards

SHA-2
• Published by NSA in 2001
• Family of hash functions of 224, 256, 384, 512 bits

SHA-3
• a.k.a. Keccak, winner of an open competition organized by NIST
• Sponge function, published in 2015
• Outputs of 224, 256, 384, 512 bits

16/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

On the existence of collisions / preimages

There exists collisions & preimages (the message space is much bigger
than the hash space).

There exists an algorithm that returns in constant time a collision for
any hash function.

=⇒ however, we don’t know how to write it down.

17/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

Random Functions

18/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

Random functions

• What is a truly random function? It’s a function that we picked at
random.

• Choice 1: pick the entire function at random before running the
algorithm;

• Choice 2: (“lazy”) build the table of the function by picking random
outputs whenever needed.

=⇒ these two cases are equivalent.

For a random function {0, 1}∗ → {0, 1}n, (second) preimages can be
found in time O(2n). This is tight.

=⇒ a good hash function should offer the same guarantee.

19/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

Interlude: birthday paradox

Lemma
Let y1, . . . , y` be random (uniform) samples in a set of size N. Then
there are two distinct i , j such that yi = yj :
• With prob. at most `2/2N
• With prob. at least `(`−1)

4N if ` ≤
√
2N

Intuition:
• Each pair has probability 1/N of forming a collision
• There are `2/2 pairs =⇒ upper bound
• But they are not independent

20/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

Interlude: birthday paradox (ctd.)
Write NoColli the event “no collision among y1, . . . , yi .”

Pr [NoColl`] = Pr [NoColl1]·Pr [NoColl2|NoColl1] · · ·Pr [NoColl`|NoColl`−1] .

Also: Pr [NoColl1] = 1, and Pr [NoColli+1|NoColli] = 1− i/N (the new
element must be different from the i previous ones)

=⇒ Pr [NoColl`] =
`−1∏
i=1

(1− i/N)

Now we do some bounding: ∀i , 1− i/N ≤ e−i/N :

Pr [NoColl`] ≤ e−
∑`−1

i=1 i/N = e−`(`−1)/2N .

And for x < 1, 1− x/2 ≥ e−x :

Pr [Coll] = 1− Pr [NoColl`] ≥ 1− e−`(`−1)/2N ≥ `(`− 1)

4N
.

21/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

Interlude: birthday paradox (ctd.)

The average number of samples to pick before a collision occurs is:√
π/2 · 2n/2

Proof:

E(nb samples) =
∑
`>0

Pr [NoColl`] '
∑
`>0

e−`
2/2n+1

'
∫ +∞

0
e−x

2/2n+1
dx

=
√
π/2 · 2n/2 .

22/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

Random function collisions

Naive algorithm:
1. pick O

(
2n/2

)
random inputs x

2. evaluate them and put the (H(x), x) pairs in a hash table
3. sort by output and find a collision

=⇒ we have an algorithm in time O
(
2n/2

)
, memory O

(
2n/2

)
to find

collisions.

For a random function {0, 1}∗ → {0, 1}n, collisions can be found in
time O

(
2n/2

)
. This is tight.

=⇒ a good hash function should offer the same guarantee.

23/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

Multicollisions

An `-collision of H is a tuple of ` distinct entries: x1, . . . , x` such that
H(x1) = . . . = H(x`).

For a random function {0, 1}∗ → {0, 1}n, `-collisions can be found in
time O

(
2

`−1
` n
)
. This is tight.

Algorithm: pick 2
`−1
` n elements at random =⇒ 2(`−1)n tuples =⇒ one

of them satisfies the multicollision property.

24/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

Pollard’s Rho

25/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

A chain

• Consider H : {0, 1}n → {0, 1}n (if the input domain is too large, fix
some of the input).

• Take x0 at random in {0, 1}n

Evaluate:
x1 = H(x0), x2 = H(x1), . . . , xi := H i (x)

Fact
The chain cannot be infinite. There exists some i 6= j such that
H i (x) = H j(x).

26/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

(Pollard’s) Rho

x0 x1 x2 x3 x4

x5

x6

x7

x8

x9

x10

x11

Birthday property!

• The first pair i , j such that H i (x) = H j(x) has i = O
(
2n/2

)
and

j = O
(
2n/2

)
;

• j = i + ` where ` is the cycle length, i the tail length;
• this gives a collision.

27/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

Floyd’s* cycle-finding algorithm

Create two chains:
• Tortoise: xi = H i (x)
• Hare: x2i = H2i (y)

Iterate until Tortoise = Hare: xi = x2i .

Fact
• The first i such that xi = x2i is O

(
2n/2

)
.

• This i is somewhere on the cycle.

*Attributed to Floyd by Knuth, but nobody knows.
28/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

Floyd’s cycle-finding algorithm

Goal: find the top of the ρ.

• i is somewhere on the cycle: i < t + ` where t is the tail and ` the
cycle length

• x2i = xi =⇒ 2i = i + k` =⇒ i = k` for some k

Create two new chains:
• xj = H j(x) (restarting from x)
• yj = H j+2i (x) (restarting from the Hare’s position)

Iterate until xj = yj ⇐⇒ H j(x) = H j+2i (x)

Here j is the top of the ρ!
=⇒ retrieve the values before: H(H j−1(x)) = H(H j+2i−1(x)) is a
collision.

Another loop is necessary if you’re looking for the cycle length.
29/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

Summary

Input: starting point x0
Output: a collision of H

1: Initialize: x ← x0, y ← x0
2: repeat
3: x ← H(x), y ← H2(y)
4: until x = y
5: Restart: x ← x0
6: repeat
7: x ′ ← x , y ′ ← y
8: x ← H(x), y ← H(y)
9: until x = y

10: return x ′, y ′

O
(
2n/2

)
time and small memory.

30/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

Random Function vs. Random
Permutation

31/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

The graph of a random function
H : {0, 1}n → {0, 1}n:

• There is a large component of size ' 2n+1/3: a large cycle of length√
π2n−3, with O

(
2n/2

)
trees of size O

(
2n/2

)
attached to it

• There are O(log n) small components of negligible size, with small
cycles

32/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

Finding a small cycle

Some cryptanalyses require small cycles of H (of length D � 2n/2):
• Take a random starting point
• Build a chain
• Iterate until ≥ D evaluations
• Restart

We will collide on the chain with probability ' D2

2n =⇒ redo 2n

D2 times
=⇒ total time O(2n/D).

33/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

The graph of a random permutation

Π : {0, 1}n → {0, 1}n:

• There are only cycles: the largest one is of size O(2n)
• There are small cycles of negligible size

34/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

Distinguishing

To distinguish a random function from a random permutation, use the
Tortoise-Hare algorithm.
• If the cycle is not found after O

(
2n/2

)
iterates, conclude that this is

a permutation
• This algorithm is tight

35/35

	Introduction
	Hash Function Security
	Random Functions
	Pollard's Rho
	Random Function vs. Random Permutation

