In the previous lecture

- Definition of a (perfectly secure) **symmetric cryptosystem** (but how do you transmit the key?)
- The one-time pad, Shannon's theorem
- Definitions of an efficient adversary, and indistinguishability notions

Introduction to Cryptography Part II: Public-Key Encryption – RSA

André Schrottenloher

Inria Rennes Team CAPSULE

- Public-Key Encryption
- 2 Prime Numbers and Factoring

Textbook RSA

Padded RSA

Public-Key Encryption

Asymmetric encryption

A PKE scheme is a triple of PPT algorithms KeyGen, Enc, Dec:

$$\begin{cases} \mathsf{KeyGen}: & 1^n & \mapsto & \mathsf{sk}, \mathsf{pk} \\ \mathsf{Enc}: & \mathsf{m}, \mathsf{pk} & \mapsto & \mathsf{c} \\ \mathsf{Dec}: & \mathsf{c}, \mathsf{sk} & \mapsto & \mathsf{m} \end{cases} \tag{1}$$

such that $\forall m$, Dec(sk, (Enc(pk, m), m)) = m.

Color code: **not secret**, **secret**, no color = public parameter.

Security of PKE

- "The adversary cannot learn anything on the ciphertext from the plaintext" = perfect security (One-time Pad).
- By restricting to PPT adversaries we get the notion of semantic security. However it's hard to prove / use in practice.
- Instead we use ciphertext indistinguishability, which is equivalent and easier to use.

IND-CPA

The IND-CPA security game for PKE is defined as follows.

- Initialization: C chooses b ← U(0,1) and keys (pk,sk) ← KeyGen(1ⁿ), sends pk to A
- Find stage : \mathcal{A} chooses messages m_0, m_1 and sends to \mathcal{C} , who returns $c^* = \text{Enc}(\mathsf{pk}, m_b)$ (the **challenge ciphertext**
- Guess stage : A computes b' and wins the game if b = b'.

Return b'

IND-CPA (ctd.)

The **advantage** of A is:

$$\operatorname{Adv}^{\mathit{CPA}}(\mathcal{A}) = \left| \mathsf{Pr} \left[\mathcal{A} \; \mathsf{wins} \right] - \frac{1}{2} \right| \; .$$

If the advantage of any PPT adversary is negligible, then the cipher is said to be **IND-CPA secure**.

IND-CPA (ctd.)

The **advantage** of A is:

$$\mathrm{Adv}^{\mathit{CPA}}(\mathcal{A}) = \left| \mathsf{Pr}\left[\mathcal{A} \; \mathsf{wins}\right] - rac{1}{2} \right| \; .$$

If the advantage of any PPT adversary is negligible, then the cipher is said to be IND-CPA secure.

Note that:

- The adversary may encrypt at will during the game (since they have the public key) => "chosen-plaintext"
- The encryption must be probabilistic, otherwise there is a trivial attack

IND-CCA

- IND-CCA is a stronger notion: IND-CPA + decryption queries.
- ullet Decryption queries should not allow the adversary to win trivially (e.g., decrypt c^*)

IND-CCA

- IND-CCA is a stronger notion: IND-CPA + decryption queries.
- Decryption queries should not allow the adversary to win trivially (e.g., decrypt c*)

The IND-CCA security game is defined like the IND-CPA game, during which \mathcal{A} can additionally perform **decryption queries**. They are answered as follows:

- ullet ${\cal A}$ chooses a ciphertext c and sends c to ${\cal C}$
- If $c \neq c^*$, C returns Dec(sk, c)
- ullet Otherwise ${\cal C}$ returns ot

IND-CCA (ctd.)

There are two variants:

- IND-CCA1 ("non-adaptive"): queries only in the "find stage" (before c* is known)
- IND-CCA2 ("adaptive"): queries at any point

The advantage of the adversary is defined by:

$$\operatorname{Adv}^{\mathsf{CCA}}(\mathcal{A}) = \left| \operatorname{\mathsf{Pr}} \left[\mathcal{A} \; \mathit{Wins} \right] - \frac{1}{2} \right| \; .$$

If the advantage of any PPT adversary is negligible, then the cipher is said to be IND-CCA(1,2) secure.

Prime Numbers and Factoring

Prime numbers and how to find them

Prime number theorem

There are $\mathcal{O}(2^n/n)$ prime numbers with n bits.

 \implies if you select a random *n*-bit integer, it's prime with probability $\mathcal{O}(1/n)$.

Fermat's little theorem

If p is prime, for any a < p, $a^{p-1} = 1 \pmod{p}$.

- ⇒ Fermat primality test: pick a random *a* and check if this condition holds. For most non-primes, the condition breaks with constant probability.
 - However there are bad cases, so we use instead the Miller-Rabin primality test: if *p* is non-prime, the condition breaks with probability 3/4.
 - Repeat ad lib until you're satisfied with the probability of success

Factoring

- Multiplying integers $(P, Q \rightarrow PQ)$ is easy
- Factoring $(PQ \rightarrow P, Q)$ is hard
- The best algorithm for factoring has subexponential complexity (GNFS):

$$\exp\left[\left((64/9)^{1/3}+o(1)\right)(\log n)^{1/3}(\log\log n)^{2/3}\right]\simeq 2^{\mathcal{O}\left(n^{1/3}\right)}$$

Some arithmetic

We work in the group \mathbb{Z}_N , and \mathbb{Z}_N^* is the (multiplicative) subgroup of invertible elements (integers < N prime with N).

Euler's totient function

$$\phi(N) = |\mathbb{Z}_N^*|$$

Properties:

$$\phi(p)=p-1$$
 for p prime $\phi(p_1\cdots p_\ell)=\phi(p_1)\cdots\phi(p_\ell)$ for p_1,\ldots,p_ℓ coprime $\phi(p^e)=p^{e-1}(p-1)$ for p prime $\phi(pq)=(p-1)(q-1)$ for p , q distinct primes

Some arithmetic (ctd.)

Lagrange's theorem

If H is a subgroup of the group G, then the order of H divides the order of G.

Corollary

In any group G, of order n, for any $a \in G$, $a^n = 1$.

Consequence: Fermat's little theorem

For any N, for any a prime with N, $a^{\phi(N)} = 1 \pmod{N}$.

Some arithmetic (ctd.)

Chinese remainder theorem (CRT)

Let N = PQ where P, Q are coprime:

$$\begin{cases} \mathbb{Z}_{N} \simeq \mathbb{Z}_{P} \times \mathbb{Z}_{Q} \\ \mathbb{Z}_{N}^{*} \simeq \mathbb{Z}_{P}^{*} \times \mathbb{Z}_{Q}^{*} \end{cases}$$

The function $f(x) = (x \mod P, x \mod Q)$ is such an isomorphism.

Some arithmetic (ctd.)

Chinese remainder theorem (CRT)

Let N = PQ where P, Q are coprime:

$$\begin{cases} \mathbb{Z}_{N} \simeq \mathbb{Z}_{P} \times \mathbb{Z}_{Q} \\ \mathbb{Z}_{N}^{*} \simeq \mathbb{Z}_{P}^{*} \times \mathbb{Z}_{Q}^{*} \end{cases}$$

The function $f(x) = (x \mod P, x \mod Q)$ is such an isomorphism.

If P, Q are known, the inverse of f can be computed in polynomial time.

- Use Euclide's algorithm to find x, y such that xP + yQ = 1.
- Given $(a, b) \in \mathbb{Z}_P \times \mathbb{Z}_Q$, compute: $c = yQa + xPb \pmod{N}$
- Check that $c \pmod{P} = yQa \pmod{P} = a$ and $c \pmod{Q} = xPb \pmod{Q} = b$.

Textbook RSA

Constructing a PKE

The Holy Grail of public-key encryption is a **trapdoor one-way function**.

- One-way: a function f that is easy to compute (x → f(x)), but difficult to invert
- **Trapdoor**: the knowledge of some additional information should make this problem easy again

Constructing a PKE

The Holy Grail of public-key encryption is a **trapdoor one-way function**.

- One-way: a function f that is easy to compute (x → f(x)), but difficult to invert
- **Trapdoor**: the knowledge of some additional information should make this problem easy again

RSA is the most well-known cryptosystem, and still one of the most used.

Textbook RSA

We work in \mathbb{Z}_N^* .

KeyGen:

- Choose P, Q prime, N = PQ
- Choose *e* prime with $\phi(N)$, compute *d* s.t. $ed = 1 \pmod{\phi(N)}$.
- sk = d, pk = (N, e)

Enc $(\mathbf{m} \in \mathbb{Z}_N^*)$:

• $c = m^e$

Dec:

• $m = c^d$.

Correctness:

$$(m^e)^d = m^{ed} = m \pmod{N}$$
.

Wait... is this efficient?

KeyGen: in time poly(n), we can generate probable primes (probability of failure = 2^{-n}) with Miller-Rabin.

Enc and Dec perform modular exponentiation.

Let
$$e = e_0 + 2e_1 + \ldots + 2^{n-1}e_{n-1}$$
:
$$m^e = m^{e_0 + 2e_1 + \ldots + 2^{n-1}e_{n-1}} = m^{e_0 + 2(e_1 + 2(e_2 + \ldots) \ldots)}$$

- Compute $m^{e_{n-1}}$
- Square: $m^{2e_{n-1}}$
- Multiply: $m^{e_{n-2}+2e_{n-1}}$
- Square: $m^{2e_{n-2}+2^2e_{n-1}}$
- ... $\implies \mathcal{O}(n)$ modular operations

DO NOT USE this algorithm in actual software.

RSA problem

The **RSA problem** is:

• Given $x^e \pmod{N}$, with public parameters (e, N), find x

The **RSA** assumption is that the problem is difficult.

Lemma

Factorisation is harder than RSA: if there is a PPT algorithm solving the factorisation problem, there is a PPT algorithm solving the RSA problem.

Knowing P and Q, we can compute $\phi(N)$, d, and compute $(x^e)^d = x$.

The converse is not known to be true!

The trapdoor function in RSA

Under the RSA assumption:

$$f(x) = x^e \pmod{N}$$

is a trapdoor one-way function with d as the trapdoor.

Is "textbook RSA" IND-CPA?

Is "textbook RSA" IND-CPA? (No)

• Textbook RSA is not IND-CPA

- Textbook RSA is not IND-CPA (because deterministic)
- To make it IND-CPA, we can add a random **padding** to the message.

- Textbook RSA is not IND-CPA (because deterministic)
- To make it IND-CPA, we can add a random **padding** to the message.

Padded RSA PKE

KeyGen:

- Choose P, Q prime, N = PQ
- Choose e prime with $\phi(N)$, compute d s.t. ed = 1 (mod $\phi(N)$).
- sk = d, pk = (N, e)

Enc $\mathbf{m} \in \{0,1\}^{\ell}$

- Choose $\mathbf{r} \leftarrow U(\{0,1\}^{\log_2 N \ell})$
- Compute $\mathbf{m}' \in \mathbb{Z}_N$ which has binary representation $(\mathbf{r} \| \mathbf{m})$
- Return $c = (m')^e$.

Dec:

• Return the ℓ LSBs of $\mathbf{m} = \mathbf{c}^{\mathsf{d}} \mod N$.

Question

Is Padded-RSA IND-CCA secure?

(Assume that Dec returns the entire $C^d \mod N$).

Question

Is Padded-RSA IND-CCA secure?

(Assume that Dec returns the entire $C^d \mod N$).

- Choose a random k
- Compute $c' = k^e c \mod N$
- Send c' to the decryption oracle, get $m' = (c')^d \mod N$
- We have: $(r||m) = m' \cdot k^{-1} \mod N$

Theorem

Theorem

If you have access to a black-box that, on input c, outputs whether $m = (c^d \mod N) < N/2$, then you can construct a decryption algorithm in $\mathcal{O}(n)$ calls to the black-box.

Theorem

Theorem

If you have access to a black-box that, on input c, outputs whether $m=(c^d \mod N) < N/2$, then you can construct a decryption algorithm in $\mathcal{O}(n)$ calls to the black-box.

Proof idea:

- Query with c: learn if $m \in [0; N/2]$
- Query with $2^{-e}c$: learn if $m \in [0; N/4[$ or . . . assume that $m \in [N/4; N/2[$
- Query with $2^{-2e}c$: learn if $4m \mod N = 4m N$ belongs to [0; N/2]
- ... (each time we manage to reduce the range)

This is from the MSB. We can do the same with the LSB.

Consequence

1. Padded RSA is CPA-secure (under RSA assumption) \implies we can transform a CPA distinguisher into an attacker for the RSA assumption.

Consequence

1. Padded RSA is CPA-secure (under RSA assumption) \implies we can transform a CPA distinguisher into an attacker for the RSA assumption.

2. Padded RSA is CCA-insecure.

Some more remarks / caveats

- N should be at least 2048 bits
- e with small Hamming weight makes the encryption more efficient
- BUT e should not be "too small"
- In padded-RSA, use $\ell = \mathcal{O}(\log N)$. RFC standard RSAES-PKCS1-V1_5 uses "at least 8 octets" of randomness.

Recap

- RSA relies on Fermat's little theorem and $(x^e)^d = x^{ed}$, where e is a public exponent and d a private one
- The security of RSA is **not** known to be equivalent to factoring (that's just the only way we attack the scheme in general)
- It relies on the RSA assumption, which is that the function x → x^e (mod N) is a one-way trapdoor function
- Do NOT use "textbook" RSA, do NOT use the square-multiply algorithm for exponentiation