
Cryptanalyse TP1: Hash functions and collisions

Security Properties of Hash Functions

Let h : {0, 1}∗ → {0, 1}n be a hash function that we suppose collision resistant. Let h′

be the following function:

h′ :


{0, 1}∗ → {0, 1}n+1

x 7→

{
0‖x if |x| = n

1‖h(x) otherwise

Question 1. Show that h′ is collision resistant.

Question 2. Show that h′ is not preimage resistant.

Collisions

During this exercise, I suggest to generate random integers using the function randrange

from the package random: randrange(N) generates a uniform random integer from
{0, 1, . . . , N − 1}. You may start from the file tp1_code.py.

We use the library hashlib from Python’s standard library, which implements many
hash functions (MD5, SHA-1, SHA-2, SHA-3). These constructions take as inputs objects
of type bytes and not str. In particular, you need to use the .encode() function or
directly construct a byte string with the prefix “b”. Read the documentation1 for more
information. Here is an example:

1 import hashlib

2

3 sha2 = hashlib.sha256

4 print(sha2(b"Hello world").hexdigest ())

5 print(sha2("Hello world".encode ()).hexdigest ())

Collision on Truncated Hash Function

Question 3. Choose a prefix (for example your first name) and implement the generic
collision search algorithm using the birthday paradox, to find two strings s1 and s2 both
starting with this prefix, so that the 32 first bits (i.e., 8 first characters in the hex string)
of SHA2(s1) and SHA2(s2) are equal. For example:

Collision found !

Input 1: maxime15857573905157511205

Input 2: maxime13871373172309900626

sha2 (input1) =

a4de129026e4f1b46270dc73772a14c26d90c3df19d2a040d347cc154d38c4f8

sha2 (input2) =

a4de1290d4324581554e4804b53f01f95211371a4241386372502d571fc1e06c

SHA256 prefix (first 32 bits) : a4de1290

Question 4. Estimate roughly the time and memory complexities of your algorithm.
Does it depend on the length of your first name?

1https://docs.python.org/3/library/hashlib.html

1/2

https://docs.python.org/3/library/hashlib.html

Cryptanalyse TP1: Hash functions and collisions

Collisions with Small Memory

In the following, we identify an n-bit truncated hexadecimal hash to an integer between
0 and 2n − 1, and use the function sha2Trunc defined in tp1_code.py.

Let H : {0, 1 . . . , 2n−1} → {0, 1, . . . , 2n−1} be a function (for example the sha2Trunc
function). Starting from a message X0, we define the sequence Xi+1 := H(Xi). Since it
takes values in a finite set, it’s necessarily periodic after some point.

We denote by c the length of the pre-period X0, . . . , Xc−1 (the length of the tail of
the ρ) and ` the length of the cycle, so that X0, . . . , Xc+`−1 are all distinct.

Floyd’s cycle-finding algorithm is given in Algorithm 1. It defines another sequence
Yi = X2i, i.e., Y0 = X0 and Yi+1 = H(H(Yi)), and outputs an element x that belongs to
the cycle.

Algorithm 1 Floyd’s cycle-finding algorithm.

1: x← H(X0)
2: y ← H(H(X0))
3: while x 6= y do
4: x← H(x)
5: y ← H(H(y))
6: end while

Question 5. Implement Floyd’s algorithm with a uniformly random value for X0.

Question 6. Write an algorithm to find the length ` of the cycle.

If c > 0 and ` > 1 one has:

H(Xc−1) = Xc = Xc+` = H(Xc+`−1)

and by definition Xc−1 6= Xc+`−1. We will use this property to find a collision.

Question 7. Write two new chains that start from X0 and X` and compute Xi and Xi+`

until equality. During the computation of the chains, you should remember the previous
element (thus 4 variables are required), and output it when Xi = Xi+`. Check that you
indeed obtained a collision.

Question 8. Deduce examples of collisions on the n first bits of SHA256 for n =
16, 32, 40, 48.

2/2

