
Cryptanalysis
Part IV: Cryptanalysis of Encryption

Modes

André Schrottenloher

Inria Rennes
Team CAPSULE



1 Encryption Modes

2 Authenticated Encryption and MACs

3 (Duplex) Sponges

2/27



Recap

In symmetric cryptography we have two categories of objects:
• Primitives: small, fixed-size objects (block ciphers, compression

functions, etc.)
• Modes: use the primitives to create true cryptographic

functionality: (authenticated) encryption, hashing, etc.
=⇒ With actual security goals like confidentiality and authenticity

Modes of operation have security proofs which reduce the security to
the one of the primitive.
• So we can focus attacks on the primitives
• We should still use the modes with caution (remember

Merkle-Dåmgard)

3/27



Recap: block ciphers

EK : {0, 1}k × {0, 1}n → {0, 1}n

• Family of permutations of {0, 1}n indexed by K ∈ {0, 1}k
• k ' 80 to 256 bits, n ' 64 to 256 bits.

Block cipher security:
• PRP: EK with random K looks like a random permutation . . .
• Strong-PRP: . . . even with inverse queries
• Ideal cipher: the whole E looks like a random family of permutations

4/27



Recap: IND-CPA and IND-CCA security

A symmetric encryption scheme is:

IND:
An adversary communicating with a challenger produces two messages
m0,m1, learns the challenge ciphertext c∗, cannot distinguish if
c∗ = Enc(m0) or c∗ = Enc(m1).

IND-CPA:
The adversary asks only encryption queries (encryption is randomized, or
uses nonces).

IND-CCA:
The adversary asks encryption and decryption queries (but cannot
decrypt c∗).

5/27



Encryption Modes

Encryption Modes

6/27



Encryption Modes

ECB (Electronic Codebook)

EK

m0

c0

EK

m1

c1

EK

m2

c2

· · · · · · EK

mt−1

ct−1

• Not IND-CPA (and simply a bad idea)

7/27



Encryption Modes

CBC (Cipher Block Chaining)

mt−1

EK

ct−1

· · · · · ·

ct−2

m2

EK

c2

m1

EK

c1

m0

EK

c0

IV

• IND-CPA security until O
(
2n/2

)
blocks queried (and time)

• You should rekey much before that

8/27



Encryption Modes

Gaps in proofs

Definition
A proof is tight ⇐⇒ it matches the best known (generic) attack
(asymptotically at least).

• When the proof is tight, the problem is solved: we cannot prove
more.

• When the proof is not tight, an uncertainty remains.
(and where there is uncertainty, people can start making mistakes)

9/27



Encryption Modes

CBC attack: birthday bound

Encrypt 2n/2 times the same block 0, then 2n/2 times some secret block
m. What happens?

=⇒ we can expect a collision between two ciphertext blocks: one from
the first part (ci ), one from the second part (c ′j ).

We have: 
ci = 0⊕ EK (ci−1) (encryption of 0 block)
c ′j = m ⊕ EK (c

′
j−1) (encryption of m block)

ci = c ′j

=⇒ EK (ci−1)⊕ EK (c
′
j−1) = m =⇒ get m.

10/27



Encryption Modes

CBC attack: birthday bound

Encrypt 2n/2 times the same block 0, then 2n/2 times some secret block
m. What happens?

=⇒ we can expect a collision between two ciphertext blocks: one from
the first part (ci ), one from the second part (c ′j ).

We have: 
ci = 0⊕ EK (ci−1) (encryption of 0 block)
c ′j = m ⊕ EK (c

′
j−1) (encryption of m block)

ci = c ′j

=⇒ EK (ci−1)⊕ EK (c
′
j−1) = m =⇒ get m.

10/27



Encryption Modes

CBC attack: proof limits

CBC is not IND-CCA:
• Encrypt mb: c = EK (mb ⊕ IV ), IV
• Decrypt under IV ⊕ 1: E−1

K (EK (mb ⊕ IV ))⊕ (IV ⊕ 1) = mb ⊕ 1
IND-CPA protects confidentiality, but offers no security against
tampering (& no authenticity) (CBC, CTR).

11/27



Encryption Modes

CBC attack: padding oracle

The PKCS7 padding norm fills the last message block with octets 0xi ,
where i is the missing number of octets.
• 0x01 is a valid 1-byte padding
• 0x02 0x02 a 2-byte padding
• 0x03 0x03 0x03 a 3-byte padding

Server side decryption (if badly implemented):
• CBC decrypt
• Check padding, abort if invalid
• Check authentication tag, abort if invalid

=⇒ the timing is different =⇒ padding oracle available

Padding attack: attacker submits ciphertext and learns if the last byte
of plaintext is a valid pad.

12/27



Encryption Modes

CBC padding attack

Situation: the attacker has ciphertext c = c0, c1, c2 and wants (the last
byte of) m1.

E−1
K

m0

c0

E−1
K

m1

c1

E−1
K

m2

c2

IV

• Drop c2
• Guess last byte of m1 as g
• Change c0 to c ′0 = c0 ⊕ (0‖g ⊕ 0x01)) (last byte changed)
• If last byte = g : valid pad, otherwise invalid pad

13/27



Encryption Modes

CBC padding attack

(Note: assumes that the second-to-last byte is not 0x02, otherwise there
is another valid case =⇒ the attack is a bit more complicated)

Next blocks
use a (0x02 0x02) pad, etc.

14/27



Authenticated Encryption and MACs

Authenticated Encryption and MACs

15/27



Authenticated Encryption and MACs

Recap

A MAC: {0, 1}k × {0, 1}∗ → {0, 1}n.
• Guarantees integrity
• Security based on unforgeability

Authenticated encryption:
E : {0, 1}k × {0, 1}∗ × N︸︷︷︸

Nonce / IV

→ {0, 1}∗

D : {0, 1}k × {0, 1}∗ × N → {0, 1}∗ ∪ {⊥}

⊥ ⇐⇒ ciphertext rejected as invalid.

AE security
IND-CPA + ciphertext integrity: adversary cannot create a new
ciphertext that decrypts correctly.

AE security =⇒ CCA security

16/27



Authenticated Encryption and MACs

Combiners

Encrypt and MAC
• Insecure: no AE security

MAC-then-encrypt:
• May be insecure

Encrypt-then-MAC
• Always the best choice
• MAC checked first, ciphertext discarded if invalid

17/27



Authenticated Encryption and MACs

CBC-MAC

0 EK EK
. . . EK Tag

m0 m1 m`−1

This version of CBC-MAC is insecure.

• MAC a message block m: get t = EK (m)
• MAC m‖(t ⊕m): get

t ′ = EK (t ⊕m ⊕ EK (m)) = EK (t ⊕m ⊕ t) = EK (m) = t

=⇒ we can obtain a valid MAC without querying the message (breaks
unforgeability)

18/27



Authenticated Encryption and MACs

CBC-MAC

0 EK EK
. . . EK Tag

m0 m1 m`−1

This version of CBC-MAC is insecure.

• MAC a message block m: get t = EK (m)
• MAC m‖(t ⊕m): get

t ′ = EK (t ⊕m ⊕ EK (m)) = EK (t ⊕m ⊕ t) = EK (m) = t

=⇒ we can obtain a valid MAC without querying the message (breaks
unforgeability)

18/27



Authenticated Encryption and MACs

ECBC-MAC

Solution: add another encryption call.

0 Ek Ek
. . . Ek Ek′ Tag

m0 m1 m`−1

19/27



Authenticated Encryption and MACs

Caution: IV

IV Ek Ek
. . . Ek Ek′ Tag

m0 m1 m`−1

• MAC a message m with IV: get t
• t is a valid tag of (m ⊕ IV ⊕ IV ′) for IV ′

=⇒ integrity not guaranteed

Solution: call the block cipher once, then XOR the first message block
(if you really want to use an IV).

20/27



(Duplex) Sponges

(Duplex) Sponges

21/27



(Duplex) Sponges

The Sponge: hash functions

• f is a cryptographic permutation
• Speed of absorption determined by the rate r
• Security determined by the capacity c

22/27



(Duplex) Sponges

Attacks (examples)

Collisions
Find two pairs of messages such that the inner part collides: 2c/2.

Preimages
Compute forwards from the initial state and backwards from the output:
try to collide on the inner part: 2c/2.

23/27



(Duplex) Sponges

ASCON-AEAD

• Winner of the NIST lightweight cryptography competition
• Based on a Duplex Sponge mode

https://csrc.nist.gov/csrc/media/Presentations/2023/the-ascon-family/images-
media/june-21-mendel-the-ascon-family.pdf

24/27



(Duplex) Sponges

ASCON-AEAD

IV‖K‖N 320
pa

⊕

0∗‖K

c

⊕r

A1

pb
⊕

As

c
pb

⊕

0∗‖1

c

⊕r

P1 C1

pb
c

⊕

Pt−1 Ct−1

pb
⊕

Pt Ct

r

⊕

K‖0∗

c

pa

⊕

K

k
T

Initialization Associated Data Plaintext Finalization

Parameters of ASCON-128

Security 128
Key 128
Rate 64

Capacity 256
Rounds (a,b) 12, 6

25/27



(Duplex) Sponges

Caution

The mode is nonce-based: N should not be reused with different
messages.

26/27



(Duplex) Sponges

Ascon: decryption

IV‖K‖N 320
pa

⊕

0∗‖K

c

⊕r

A1

pb
⊕

As

c
pb

⊕

0∗‖1

c

⊕r

P1 C1

pb
c

⊕

Pt−1 Ct−1

pb
⊕

Pt Ct

r

⊕

K‖0∗

c

pa

⊕

K

k
T

Initialization Associated Data Plaintext Finalization

27/27


	Encryption Modes
	Authenticated Encryption and MACs
	(Duplex) Sponges

