Cryptanalysis
Part 1V: Cryptanalysis of Encryption
Modes

André Schrottenloher

Inria Rennes
Team CAPSULE

y 4 N
o
V4 =) -<
&@’Zéa/- el
CAPSULE

o Encryption Modes

© Authenticated Encryption and MACs

© (Duplex) Sponges

Recap

In symmetric cryptography we have two categories of objects:

e Primitives: small, fixed-size objects (block ciphers, compression
functions, etc.)
e Modes: use the primitives to create true cryptographic
functionality: (authenticated) encryption, hashing, etc.
— With actual security goals like confidentiality and authenticity

Modes of operation have security proofs which reduce the security to
the one of the primitive.
e So we can focus attacks on the primitives
e We should still use the modes with caution (remember
Merkle-D&mgard)

3/27

Recap: block ciphers

Ex :{0,1}* x {0,1}" — {0,1}"

e Family of permutations of {0,1}" indexed by K € {0, 1}k
e k ~ 80 to 256 bits, n ~ 64 to 256 bits.

Block cipher security:

e PRP: Ex with random K looks like a random permutation ...
e Strong-PRP: ...even with inverse queries
e Ideal cipher: the whole E looks like a random family of permutations

4/27

Recap: IND-CPA and IND-CCA security

A symmetric encryption scheme is:

IND:

An adversary communicating with a challenger produces two messages
mo, my, learns the challenge ciphertext c*, cannot distinguish if
c* = Enc(mg) or ¢* = Enc(my).

IND-CPA:

The adversary asks only encryption queries (encryption is randomized, or
uses nonces).

IND-CCA:

The adversary asks encryption and decryption queries (but cannot
decrypt c*).

5/27

Encryption Modes

ECB (Electronic Codebook)

mo m1 mo mi—
Ex Ex Ex | e Ex
Co C1 C2 Ct—1

e Not IND-CPA (and simply a bad idea)

7/21

Encryption Modes

CBC (Cipher Block Chaining)

mo mi mao
Y Y Y
IV —»p »D »D
Y Y Y
Ex Eyx Ex
Y Y l
Co C1 Co

Ct—1

e IND-CPA security until O(2"/2) blocks queried (and time)

e You should rekey much before that

8/27

Encryption Modes

Gaps in proofs

Definition
A proof is tight <= it matches the best known (generic) attack
(asymptotically at least).

e When the proof is tight, the problem is solved: we cannot prove
more.

e When the proof is not tight, an uncertainty remains.
(and where there is uncertainty, people can start making mistakes)

9/27

Encryption Modes

CBC attack: birthday bound

Encrypt 27/2 times the same block 0, then 27/2 times some secret block
m. What happens?

10/27

Encryption Modes

CBC attack: birthday bound

Encrypt 27/2 times the same block 0, then 27/2 times some secret block
m. What happens?

— we can expect a collision between two ciphertext blocks: one from
the first part (c;), one from the second part (c;).

We have:

¢i = 0® Ek(ci—1) (encryption of 0 block)
¢ = m® Ex(cj_;) (encryption of m block)

Ci = ¢

= Ek(ci-1) ® Ex(¢j_1) =m = get m.

10/27

Encryption Modes

CBC attack: proof limits

CBC is not IND-CCA:

e Encrypt mp: ¢ = Ex(mp @& IV), IV
e Decrypt under IV @ 1: Ex*(Ex(mp @ IV)) @ (IV @ 1) =mp®1

IND-CPA protects confidentiality, but offers no security against
tampering (& no authenticity) (CBC, CTR).

11/27

Encryption Modes

CBC attack: padding oracle

The PKCS7 padding norm fills the last message block with octets 0xi,
where i is the missing number of octets.

e 0x01 is a valid 1-byte padding
e 0x02 0x02 a 2-byte padding
e 0x03 0x03 0x03 a 3-byte padding

Server side decryption (if badly implemented):

e CBC decrypt
e Check padding, abort if invalid
e Check authentication tag, abort if invalid

= the timing is different = padding oracle available

Padding attack: attacker submits ciphertext and learns if the last byte
of plaintext is a valid pad.

12/27

Encryption Modes

CBC padding attack

Situation: the attacker has ciphertext ¢ = ¢y, ¢1, ¢ and wants (the last
byte of) my.

Co C1 Co
| l
Ex EZ! E!
, s s
v D P <D
Y Y A
mo mi ma
Drop

Guess last byte of m; as g

Change ¢ to ¢§ = cp @ (0]|g @ 0x01)) (last byte changed)
If last byte = g: valid pad, otherwise invalid pad

13/27

Encryption Modes

CBC padding attack

(Note: assumes that the second-to-last byte is not 0x02, otherwise there
is another valid case = the attack is a bit more complicated)

Next blocks
use a (0x02 0x02) pad, etc.

14/27

Authenticated Encryption and MACs

Authenticated Encryption and MACs J

15/27

Authenticated Encryption and MACs

Recap

A MAC: {0,1}% x {0,1}* — {0,1}".
e Guarantees integrity
e Security based on unforgeability

Authenticated encryption:

. k * *
E :{0,1}*x{0,1}*x N —{0,1}
Nonce / IV
D :{0,1}% x {0,1}* x N — {0,1}* U {1}

1 <= ciphertext rejected as invalid.

AE security
IND-CPA + ciphertext integrity: adversary cannot create a new
ciphertext that decrypts correctly.

AE security = CCA security

16/27

Authenticated Encryption and MACs

Combiners

Encrypt and MAC

e Insecure: no AE security
MAC-then-encrypt:

e May be insecure
Encrypt-then-MAC

e Always the best choice
e MAC checked first, ciphertext discarded if invalid

17/27

Authenticated Encryption and MACs

CBC-MAC

) be

Ex

Ex

This version of CBC-MAC is insecure.

Ex

—Tag

18/27

Authenticated Encryption and MACs

CBC-MAC

04$—> EK EK —Aéf EK —>Tag

This version of CBC-MAC is insecure.

e MAC a message block m: get t = Ex(m)
o MAC m||(t ® m): get
' =Ex(t®&m® Ex(m)) = Ex(t®mdt)=Ex(m) =1t
= we can obtain a valid MAC without querying the message (breaks
unforgeability)

18/27

Authenticated Encryption and MACs

ECBC-MAC

Solution: add another encryption call.

mo mq my_1
' ' '
0—@—> Ek Ek ——@— Ek 1 Ek/ —>Tag

19/27

Authenticated Encryption and MACs

Caution: IV

mo mq my—1

IV‘é—> FEy E; —Aé— E, — E, [Tag

e MAC a message m with IV: get t
e tis avalid tag of (ma IV & IV') for IV’
— integrity not guaranteed

Solution: call the block cipher once, then XOR the first message block
(if you really want to use an V). J

20/27

(Duplex) Sponges

The Sponge: hash functions

=

I

D)

)
el

1
ad
Yy Y N Y N
Y Y A /
r{ |0 4
f f f f f
c 0 > - - - -

absorbhﬂg:squeezhng

sponge

e f is a cryptographic permutation
e Speed of absorption determined by the rate r
e Security determined by the capacity ¢

22/27

(Duplex) Sponges

Attacks (examples)

Collisions
Find two pairs of messages such that the inner part collides: 2</2.

Preimages

Compute forwards from the initial state and backwards from the output:
try to collide on the inner part: 2¢/2.

23/27

(Duplex) Sponges

ASCON-AEAD

e Winner of the NIST lightweight cryptography competition
e Based on a Duplex Sponge mode

B https://csrc.nist.gov/csrc/media/Presentations /2023 /the-ascon-family /images-
media/june-21-mendel-the-ascon-family.pdf
24/27

(Duplex) Sponges

ASCON-AEAD

LAy As L PGy Py C P Gy
RARNEARFERSIn NS (R a
WVIIEKN=Spt 0 | Pl » P L
L c c ® . c c c . @ k
' T T
0*|K ! o*1 ! ' K|o*
Initialization Associated Data Plaintext Finaliza
Parameters of ASCON-128
Security 128
Key 128
Rate 64
Capacity 256
Rounds (a,b) | 12, 6

25/27

(Duplex) Sponges

Caution

The mode is nonce-based: N should not be reused with different
messages.

26/27

(Duplex) Sponges

Ascon: decryption

: Al AS : Pl Cl Py Ct—l Pt
RS ET T RNV
WV|KIN=Spt| 8 p Pl P’ P
PN e PN c p
0*|| K ! 0*1 !
Initialization Associated Data Plaintext Finaliza

27/27

	Encryption Modes
	Authenticated Encryption and MACs
	(Duplex) Sponges

