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Stream ciphers

• Hardware implementations
• Very fast, energy-efficient

• WEP (Wifi, norme IEEE 802.11, 1999): RC4 (broken)
• Bluetooth: E0
• 2G/3G: A5/1 (backdoored)
• 4G/5G: SNOW
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They still exist

• eSTREAM competition (2004-2008) =⇒ 7 new ciphers, incl.
Salsa20

• Chacha20: new variant of Salsa20 with better performance, used in
TLS1.3

• GrainAEAD: finalist of the NIST Lightweight standardization
(although ASCON won)
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LFSR

LFSR
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LFSR

Feedback Shift Register

Objective: create a pseudorandom sequence that depends only on the
initial internal state.

(sn)n∈N ∈ FN
q is produced by a feedback function F if there exists ` ∈ N

and F : F`
q → Fq such that:

∀n ∈ N, sn+` = F (sn+`−1, sn+`−2, . . . , sn+1, sn)
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LFSR

Linear Feedback Shift Register

(sn)n∈N ∈ FN
q is produced by a linear feedback function if there exists

` ∈ N and F : F`
q → Fq a linear form such that:

∀n ∈ N, sn+` = F (sn+`−1, sn+`−2, . . . , sn+1, sn)

(sn) is produced by an LFSR if there exists a constant vector
(c1, . . . , c`) ∈ F`

q such that:

∀n, sn+` = c1sn+`−1 + . . . + c`sn

Every linear recurrent sequence of order ` is produced by an LFSR of
length `.
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LFSR

Example: binary LFSR

{
sn+4 = sn + sn+1

c1, c2, c3, c4 = 0, 0, 1, 1
(1)

0 0 0 0

+

0
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LFSR

Example: nontrivial binary LFSR

1 1 0 1

+

1
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LFSR

Example: nontrivial binary LFSR

1 1 1 0

+

10

9/30



LFSR

Example: nontrivial binary LFSR

1 1 1 1

+

101
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LFSR

Example: nontrivial binary LFSR

0 1 1 1

+
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LFSR

Example: nontrivial binary LFSR

0 0 1 1
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10111
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LFSR

Example: nontrivial binary LFSR

0 0 0 1

+

101111
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LFSR

Example: nontrivial binary LFSR

1 0 0 0

+

1011110
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LFSR

Example: nontrivial binary LFSR

0 1 0 0

+

10111100
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LFSR

Example: nontrivial binary LFSR

0 0 1 0

+

101111000
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LFSR

Example: nontrivial binary LFSR

1 0 0 1

+

1011110001
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LFSR

Example: nontrivial binary LFSR

1 1 0 0

+

10111100010
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LFSR

Example: nontrivial binary LFSR

0 1 1 0

+

101111000100
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LFSR

Example: nontrivial binary LFSR

1 0 1 1

+

1011110001001
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LFSR

Example: nontrivial binary LFSR

0 1 0 1

+

10111100010011
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LFSR

Example: nontrivial binary LFSR

1 0 1 0

+

101111000100110 . . .
• The period is 15 = 24 − 1
• It is maximal!
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LFSR

Retroaction polynomial

Consider an LFSR of length ` and coefficients c1, . . . , c` ∈ F`
q. We define

the retroaction polynomial by:

P(X ) = 1−
∑̀
i=1

ciX
i ∈ Fq[X ]

The previous LFSR has the polynomial:

P(X ) = 1 + X 3 + X 4 ∈ F2[X ]

+ and - in F2 are the same thing.
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LFSR

Sparsification

Any sequence produced by a LFSR of retroaction P can be produced by
any LFSR of retroaction a multiple of P.

Example: let (sn) be a sequence in F2 that satisfies:

sn+6 = sn+4 + sn+3 + sn+1 + sn,∀n ≥ 6

Its retroaction polynomial is P(X ) = 1 + X 2 + X 3 + X 5 + X 6. The
sequence also satisfies: sn+8 = sn+7 + sn, since:

1 + X + X 8 = (1 + X + X 2)P(X )
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LFSR

Minimisation

Let (sn)n∈N be a linear recurrent sequence.

Among all retroaction polynomials for (sn), there exists one of minimal
degree.
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LFSR

Period

Let (sn)n∈N be a linear recurrent sequence and P its minimal retroaction
polynomial. Let ` be its degree.

The period of s is q` − 1 iff P is primitive.

Example: P(X ) = 1 + X 3 + X 4 is a primitive polynomial; so the period
is going to be 24 − 1 = 15.

A primitive LFSR has good statistical properties, but cannot be used
alone to construct a stream cipher: we combine multiple LFSRs and use
a filtering function.

Primitive polynomial = monic and one of its roots is a primitive q` − 1-root of
unity.
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LFSR

The Berlekamp-Massey algorithm

If the minimal polynomial is of degree d , the Berlekamp-Massey
algorithm can find it from 2d terms of the sequence.

=⇒ useful if we do not know a retroaction polynomial (e.g., for
cryptanalysis).
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Combining LFSRs

Combining LFSRs
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Combining LFSRs

Objective

Combine the outputs of multiple LFSRs:

st = f (s
(1)
t , . . . , s

(n)
t )

where f : Fn
2 → F2 is a Boolean function.

• Each LFSR has a primitive retroaction polynomial.
• The characteristics (length, polynomials) are public.
• The initial states of each LFSR (formed from the secret key + IV)

are secret.
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Combining LFSRs

Interlude: Boolean functions

Definition
A Boolean function in n variables is a function f : Fn

2 → F2. It can be
described by its truth table.

How many n-variable Boolean functions are there?
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Combining LFSRs

Support and weight

• The support of a Boolean function is:

Supp(f ) = {x ∈ Fn
2, f (x) 6= 0}

• The weight of f is w(f ) = |Supp(f )|
• f is balanced if w(f ) = 2n−1

We need the Boolean function to be balanced (otherwise the output will
be biased).
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Combining LFSRs

Algebraic normal form

There exists a unique multivariate polynomial f̄ such that:

f̄ (X1, . . . ,Xn) =
∑

u=(u1,...,un)∈Fn
2

auX
u1
1 · · ·X

un
n

such that: f (x1, . . . , xn) = f̄ (x1, . . . , xn)

f̄ is the ANF of f , and:

au =
∑
x�u

f (x) where x � y iff xi ≤ yi for all i

Remember that this is a sum on F2.
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Combining LFSRs

Algebraic degree

The algebraic complexity of a Boolean function is quantified by the
degree of its ANF: if

f (X1, . . . ,Xn) =
∑
u∈Fn

2

auX
u1
1 · · ·X

un
n

then
deg(f ) = max{hw(u)|au 6= 0}

where hw(u) is the Hamming weight of u (number of ones).
This is the maximal number of variables in a monomial of f .

A “random” Boolean function has very large degree (n− 1). Having small
degree is a property that can be used for cryptanalysis.
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Combining LFSRs

Example

Geffe proposed to use the function defined by the following truth table to
combine 3 LFSRs.

x1 0 0 0 0 1 1 1 1
x2 0 0 1 1 0 0 1 1
x3 0 1 0 1 0 1 0 1

f (x1, x2, x3) 0 1 0 0 0 1 1 1

We can see that:

Supp(f ) = {(0, 0, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}

and w(f ) = 4.
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Combining LFSRs

ANF

a000 = f (0, 0, 0) = 0
a001 = f (0, 0, 0) + f (0, 0, 1) = 1
a010 = f (0, 0, 0) + f (0, 1, 0) = 0
a011 = f (0, 0, 0) + f (0, 1, 0) + f (0, 0, 1) + f (0, 1, 1) = 1
a100 = f (0, 0, 0) + f (1, 0, 0) = 0
a101 = f (0, 0, 0) + f (1, 0, 0) + f (0, 0, 1) + f (1, 0, 1) = 0
a110 = f (0, 0, 0) + f (1, 0, 0) + f (0, 1, 0) + f (1, 1, 0) = 1

a111 =
∑
u

f (u) = w(f ) mod 2 = 0

f (X1,X2,X3) = X3 + X2X3 + X1X2 and deg(f ) = 2
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Combining LFSRs

Linear complexity of the combined sequence

The degree of the minimal polynomial is named linear complexity of the
sequence and noted Λ(s).

Lemma (Rueppel, Staffelbach, 1987)
Let s1 and s2 be two linear recurrent sequences, of minimal polynomials
P1 and P2. Then:
• Λ(s1 + s2) ≤ Λ(s1) + Λ(s2) with equality iff gcd(P1,P2) = 1
• Λ(s1 ∗ s2) ≤ Λ(s1)Λ(s2). If P1, P2 are primitive, of degrees distinct

and bigger than 2, there is an equality.

Here s1 ∗ s2 means the pointwise product of the sequences.
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Combining LFSRs

Linear complexity of the combined sequence

Corollary
Let s1, . . . , sn be linear recurrent sequences produced by LFSRs of
respective lengths `1, . . . , `n. Let f : Fn

2 → F2 be a Boolean function.
The combined sequence f (s1, . . . , sn) has linear complexity:

Λ = f (`1, . . . , `n)

obtained by evaluating the ANF of f as a polynomial in Z.

Example: for Geffe’s cipher: f (x1, x2, x3) = x3 + x2x3 + x1x2
The linear complexity is Λ = `3 + `2`3 + `1`2.
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Combining LFSRs

Filtered LFSRs

• Take several bits of the same LFSR
• Equivalent: Combine k LFSRs with the same retroaction

polynomial, but shifted initial states
• Caution: previous results do not apply
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Combining LFSRs

(Edwin L. Key, 1976)
The linear complexity Λ(s) of a sequence s produced by an LFSR of
length ` and filtered by a Boolean function of degree d satisfies:

Λ(s) ≤
d∑

i=0

(
`

i

)

(Rueppel, 1986)
When ` is prime and big enough, then Λ(s) '

(
`
d

)
for most degree-d

Boolean functions.
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Cryptanalysis

Cryptanalysis
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Cryptanalysis

Correlation attacks

• Consider n LFSRs of lengths `1, . . . , `n with a post-processing
function f .

• Goal: find the internal states.

Exhaustive search: =
∏n

i=1(2`i − 1)
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Cryptanalysis

Correlation attack: principle

If f is badly chosen, the output sequence may be correlated to a
sequence formed by less LFSRs.
• Perform an exhaustive search of the internal states of these LFSRs
• Check if the output sequence is correlated as we expect
• Once the internal state of an LFSR is obtained, continue with the

others
e.g.,

∏
i (2

`i − 1)→
∑

i (2
`i − 1)
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Cryptanalysis

Countermeasures

A boolean function f is uncorrelated to order k if for all independent
random variables X1, . . . ,Xn, the random variable f (X1, . . . ,Xn) is
independent from any (Xi1 , . . . ,Xik ). The largest such k is the immunity
of f to correlations.

We need to choose f with a strong immunity, and a large algebraic
degree.
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