Organization

Slides, TP sheets and code (only for this part of the course):
andreschrottenloher.github.io/pages/teaching.html

Questions at:
andre(dot)schrottenloher(at)inria(dot)fr

andreschrottenloher.github.io/pages/teaching.html

Introduction
0000

Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation
000000000 0000000 000000 00000

Contents

w

Security of hash functions (collisions, preimages, birthday paradox,
properties of random functions)

Cryptanalysis of hash constructions (attacks on Merkle-Damgard)
Cryptanalysis of encryption modes, security of MACs and sponges
Stream ciphers and their cryptanalysis

2/35

Cryptanalysis
Part |I: Collisions and random functions

André Schrottenloher

Inria Rennes
Team CAPSULE

SR
p) Y

7 HOK
’2:‘:‘:!L——-—~ N
CAPSULE

© Introduction

© Hash Function Security
© Random Functions

© Pollard’s Rho

© Random Function vs. Random Permutation

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation
o] Iele) 000000000 0000000 000000 00000

What is cryptanalysis?

"Breaking” cryptosystems?
More generally: evaluating the security

Looking for an unpredicted behavior of the scheme;
Looking for a better algorithm to attack it. J

The situation differs between:

e asymmetric and symmetric crypto;
e the provable setting (modes of operation) & the unprovable setting
(primitives).

6/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation
ooeo 000000000 0000000 000000 00000

e Most often, our “attacks” are infeasible (and we know that)

e They are infeasible because of the resources (time / memory) or the
attacker scenario is (looks?) impractical (related-key, etc.)

e We're at the lowest level of cybersecurity, so we cannot afford the

smallest weakness
e Besides, weaknesses have a tendency to become worse over time.

Important principles:

+oo
Security = / Cryptanalysis effort dt J
0

“We can only gain confidence through a continuous (public!)
cryptanalysis effort”

d(attack lexit
(attac Zc;mp exity) <0 J

“An attack will only improve over time”
7/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation
oooe 000000000 0000000 000000 00000

Security levels

Security level

e A security level is expressed in “bits of security”.
e 120 bits of security ~ the attack requires 2120 operations to execute.

What is feasible “in practice’”?)

e 1000 ~ 210
e 4GHz ~ 232 operations per second on a CPU
e multi-core CPUs

With massively parallelized GPUs: 250 is accessible.

The Bitcoin network computes 2°° SHA-256 per year using a massive
amount of ASICs.

However computing 2128 hashes would require more energy than
vaporizing all the Earth's oceans = 128 bits of security is good.

8/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation
0000 0@0000000 0000000 000000 00000

Hash functions

A hash function is a public function that takes a variable-length
message and outputs a fixed-length digest: H : {0,1}* — {0,1}". J

The “ideal” behavior of a hash function is to look like a completely
random function {0,1}* — {0,1}".

This lecture

e Focus on compression functions and / or small-range hashing:
the input has size n + m.

e Typically used with the Merkle-Ddmgard domain extender to
produce large-scale hash functions.

The hash function output should not give any information on the input.

10/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation
0000 00@000000 0000000 000000 00000

Preimage resistance

Fix H : {0,1}* — {0,1}".

Preimage resistance
For t + {0,1}", it should be difficult to find m such that t = H(m).
e By brute force, this takes time O(2") (to succeed with constant

probability)
e So it should take time O(2")

Example: password authentication.

e One stores only H(password).
e An attacker having access to the database cannot find the
passwords.

11/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation
0000 000e00000 0000000 000000 00000

Second preimage resistance

Fix H : {0,1}* — {0,1}".

For x <~ {0,1}™, it should be difficult to find y # x such that
H(y) = H(x).
e By brute force, this takes time O(2") (to succeed with constant
probability)

Example: hash-and-sign signatures
e Sign H(message)
e Integrity of files
e One cannot forge: find another file with a valid signature

12/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation
0000 0000@0000 0000000 000000 00000

Collision resistance

Collision resistance

e Producing a collision (pair x # y such that H(x) = H(y)) should
take time O(2"/2) (why? next slides)

This is the same as long as the input size is > n bits.
13/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation
0000 00000e000 0000000 000000 00000

Chosen-prefix collisions

Fix p1, p2 € {0,1}™, we look for a collision of the form:

H(p1llm1) = H(p2|m2)

e Yields practical attacks: forgery of certificates, malicious GPG /
SSH keys
e Flame malware using chosen-prefix collisions on MD5

14/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

0000 000000800 0000000 000000 00000

Some examples

MD5 (broken)

e 128-bit hash (RFC 1321, Rivest, 1992)

e Collisions found (Wang, Yu, 2005)

e Forgery of certificates (Stevens et al., 2009)
SHA-0 (broken)

e 160-bit hash (NSA, 1993)

e Collisions (theoretical) in 1998 (Joux, Chabaud)
SHA-1 (broken)
160-bit hash
Theoretical collisions in 2005 (Wang et al.)
Practical collisions in 2017 (Stevens et al., 2009)
Chosen-prefix collisions (Leurent, Peyrin, 2020)
Still used a lot ...

15/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation
0000 000000080 0000000 000000 00000

Current standards

SHA-2

e Published by NSA in 2001
e Family of hash functions of 224, 256, 384, 512 bits

SHA-3

e a.k.a. Keccak, winner of an open competition organized by NIST
e Sponge function, published in 2015
e Outputs of 224, 256, 384, 512 bits

16/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation
0000 00000000e 0000000 000000 00000

On the existence of collisions / preimages

There exists collisions & preimages (the message space is much bigger
than the hash space).

There exists an algorithm that returns in constant time a collision for
any hash function.

— however, we don’t know how to write it down.

17/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation
0000 000000000 0@00000 000000 00000

Random functions

e What is a truly random function? It’s a function that we picked at
random.
e Choice 1: pick the entire function at random before running the
algorithm;
e Choice 2: (“lazy”) build the table of the function by picking random
outputs whenever needed.
— these two cases are equivalent.

For a random function {0,1}* — {0,1}", (second) preimages can be
found in time O(2"). This is tight. J

= a good hash function should offer the same guarantee.

19/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation
0000 000000000 00e0000 000000 00000

Interlude: birthday paradox

Lemma
Let y1,. ..,y be random (uniform) samples in a set of size N. Then
there are two distinct /,j such that y; = y;:

e With prob. at most ¢2/2N

e With prob. at least % if £ <+v2N

Intuition:

e Each pair has probability 1/N of forming a collision
e There are £2/2 pairs = upper bound
e But they are not independent

20/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation
0000 000000000 000e000 000000 00000

Interlude: birthday paradox (ctd.)
Write NoColl; the event “no collision among yy,...,y;."
Pr[NoColly] = Pr[NoColh]-Pr [NoColl| NoColh] - - - Pr [NoColly|NoColl;_1] .

Also: Pr[NoColh] =1, and Pr[NoColliy1|NoColl;] =1 — i/N (the new
element must be different from the i previous ones)

-1
= Pr[NoColl;] = H(l —i/N)
i=1
Now we do some bounding: Vi,1 —i/N < e=//N:
Pr[NoColly] < e~ SN g—(e=1)/2N

And for x <1,1—x/2> e~

~1
Pr[Coll] = 1 — Pr[NoColly] > 1 — e~ “(¢=1/2N > % :

21/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation
0000 000000000 0000e00 000000 00000

Interlude: birthday paradox (ctd.)

The average number of samples to pick before a collision occurs is: J

/2. 2"?

Proof:

+00
E(nb samples) = Z Pr[NoColly] ~ Z e /2 o / e /2" dx
0

£>0 £>0

= /m/2.2"2 .

22/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation
0000 000000000 0000080 000000 00000

Random function collisions

Naive algorithm:

1. pick (9(2”/2) random inputs x

2. evaluate them and put the (H(x), x) pairs in a hash table

3. sort by output and find a collision

= we have an algorithm in time (9(2”/2), memory (9(2"/2) to find
collisions.

For a random function {0,1}* — {0,1}", collisions can be found in
time O(2"/2). This is tight. J

= a good hash function should offer the same guarantee.

23/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

0000 000000000 000000e 000000 00000
Multicollisions
An (-collision of H is a tuple of £ distinct entries: xi,...,x; such that
H(x1) = ... = H(xp). J

For a random function {0,1}* — {0,1}", ¢-collisions can be found in
time (’)(2[%1”). This is tight.

(¢-1)

. . L=
Algorithm: pick 27" elements at random = 2 " tuples = one

of them satisfies the multicollision property.

24/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation
0000 000000000 0000000 000000 00000

A chain

e Consider H : {0,1}" — {0,1}" (if the input domain is too large, fix
some of the input).
e Take xp at random in {0,1}"

Evaluate: _
x1 = H(xo),x2 = H(x1),...,x = H'(x)

Fact

The chain cannot be infinite. There exists some i # j such that
Hi(x) = H/(x).

26/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation
0000 000000000 0000000 00e000 00000

(Pollard’s) Rho

Xo — X1 — X2 — X3 X4
7 ~
X5
X11

f \

X10 X6

\ /

X9 X7

Birthday property!
e The first pair i, such that H/(x) = H/(x) has i = O(2"/2) and
Jj= (9(2"/2);
e j =i+ ¢ where { is the cycle length, i the tail length;
e this gives a collision.

27/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation
0000 000000000 0000000 000e00 00000

Floyd’'s* cycle-finding algorithm

Create two chains:
e Tortoise: x; = H'(x)
e Hare: xo; = H?(y)
Iterate until Tortoise = Hare: x; = xo; .

v
Fact
e The first i such that x; = xo; is (9(2"/2).
e This / is somewhere on the cycle.)

*Attributed to Floyd by Knuth, but nobody knows.
28/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation

0000 000000000 0000000 0000e0 00000

Floyd's cycle-finding algorithm

Goal: find the top of the p. J

e i is somewhere on the cycle: i < t + £ where t is the tail and ¢ the

cycle length
e Xoi =x; = 2i =i+ kl{ — i= ki for some k

Create two new chains:

e x; = H/(x) (restarting from x)
e y; = H™2(x) (restarting from the Hare's position)

lterate until x; = y; <= H/(x) = H/*%(x)

Here j is the top of the p!
= retrieve the values before: H(H'~!(x)) = H(H/*?~1(x)) is a
collision.

Another loop is necessary if you're looking for the cycle length.
29/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation
0000 000000000 0000000 00000e 00000

Summary

Input: starting point xg
Output: a collision of H

X —x,y vy

x + H(x), y + H(y)
until x = y
return x’, y’

1: Initialize: x < xg,y < Xo
2: repeat

3: x + H(x), y + H?(y)
4 until x =y

5: Restart: x < xg

6: repeat

7:

8:

9:

-
=4

O(2"/?) time and small memory. |

30/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation
0000 000000000 0000000 000000 0e000

The graph of a random function

H :{0,1}" - {0,1}":

—~d,

%

e There is a large component of size ~ 2"*1/3: a large cycle of length
Vr2n=3, with 0(2”/2) trees of size O(2"/2) attached to it

e There are O(log n) small components of negligible size, with small
cycles

32/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation
0000 000000000 0000000 000000 0000

Finding a small cycle

Some cryptanalyses require small cycles of H (of length D < 2"/2):

e Take a random starting point

e Build a chain

e lterate until > D evaluations

e Restart
We will collide on the chain with probability ~ g—: —> redo é—nz times
= total time O(2"/D).

33/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation
0000 000000000 0000000 000000 000e0

The graph of a random permutation

n:{o0,1}" — {0,1}"

O 0

O

e There are only cycles: the largest one is of size O(2")
e There are small cycles of negligible size

34/35

Introduction Hash Function Security Random Functions Pollard’s Rho Random Function vs. Random Permutation
0000 000000000 0000000 000000 [eJe]e]e])

Distinguishing

To distinguish a random function from a random permutation, use the
Tortoise-Hare algorithm.

e If the cycle is not found after 0(2"/2) iterates, conclude that this is
a permutation
e This algorithm is tight

35/35

	Introduction
	Hash Function Security
	Random Functions
	Pollard's Rho
	Random Function vs. Random Permutation

