
Introduction to Cryptography
Part VII: Symmetric Cryptography

(Again)

André Schrottenloher

Inria Rennes
Team CAPSULE



1 Constructing Hash Functions

2 (Duplex) Sponges

3 Constructing a Block Cipher

2/22



Constructing Hash Functions

Constructing Hash Functions

3/22



Constructing Hash Functions

How to transform a block cipher into a
compression function

Reminder

A block cipher is a family of permutations of {0, 1}n indexed by a key.

50 years of symmetric cryptography have shown that we know better how
to construct permutations than non-invertible functions.

Reminder

• A compression function is a non-invertible function
{0, 1}m × {0, 1}n → {0, 1}n (≃ fixed-length hash function).

• Security: collisions, preimages, second preimages.

4/22



Constructing Hash Functions

How to transform a block cipher into a
compression function

There are several secure modes (see poly), for example Davies-Meyer:

• Use key as message block input mi ∈ {0, 1}m
• Use block as chaining value input hi ∈ {0, 1}n
• XOR block to the output to make it non-invertible

Ehi−1 hi

mi

hi = hi−1 ⊕ Emi (hi−1)

If the block cipher is ideal, the DM-based compression function is secure.

5/22



Constructing Hash Functions

How to transform a block cipher into a
compression function

There are several secure modes (see poly), for example Davies-Meyer:
• Use key as message block input mi ∈ {0, 1}m
• Use block as chaining value input hi ∈ {0, 1}n
• XOR block to the output to make it non-invertible

Ehi−1 hi

mi

hi = hi−1 ⊕ Emi (hi−1)

If the block cipher is ideal, the DM-based compression function is secure.

5/22



Constructing Hash Functions

Note that. . .

. . . it is also very easy to produce insecure modes, for example:

f (hi−1,mi ) = Emi⊕hi−1(mi ⊕ hi−1)⊕mi

=⇒ one can produce preimages.

Attack

• Notice that if mi ⊕ hi−1 = c , then:

f (hi−1,mi ) = Ec(c)⊕mi

• Fix mi = Ec(c), choose hi−1 = Ec(c)⊕ c , then:

f (hi−1,mi ) = 0

6/22



Constructing Hash Functions

Note that. . .

. . . it is also very easy to produce insecure modes, for example:

f (hi−1,mi ) = Emi⊕hi−1(mi ⊕ hi−1)⊕mi

=⇒ one can produce preimages.

Attack

• Notice that if mi ⊕ hi−1 = c , then:

f (hi−1,mi ) = Ec(c)⊕mi

• Fix mi = Ec(c), choose hi−1 = Ec(c)⊕ c , then:

f (hi−1,mi ) = 0

6/22



Constructing Hash Functions

Merkle-Dåmgard domain extender

pad(M) = M1 M2 M3 M4

Hh0 = IV H
h1

H
h2

H
h3

· · ·

From a fixed-length compression function
H : {0, 1}m × {0, 1}n → {0, 1}n:
• pad the message using a secure padding
• Separate the message in blocks of size m
• Absorb the blocks by iterating the compression function

Theorem (informal)
If the compression function is (collision, preimage,
second-preimage)-resistant, and the padding scheme is secure, the MD
extension is resistant.

7/22



Constructing Hash Functions

MD: caution

• Many algorithmic attacks using the iterated construction;
• Proof of security guarantees only n/2 bits where n is the size of the

chaining value, for collisions and preimages;
• For more security, one needs a bigger chaining value (128 is not

enough).

8/22



(Duplex) Sponges

(Duplex) Sponges

9/22



(Duplex) Sponges

The Sponge: hash functions

• f is a cryptographic permutation
• Speed of absorption determined by the rate r
• Security determined by the capacity c

10/22



(Duplex) Sponges

Attacks (examples)

Collisions
Find two pairs of messages such that the inner part collides: 2c/2.

Preimages
Compute forwards from the initial state and backwards from the output:
try to collide on the inner part: 2c/2.

11/22



(Duplex) Sponges

ASCON-AEAD

• Winner of the NIST lightweight cryptography competition
• Based on a Duplex Sponge mode

https://csrc.nist.gov/csrc/media/Presentations/2023/the-ascon-family/images-
media/june-21-mendel-the-ascon-family.pdf

12/22



(Duplex) Sponges

ASCON-AEAD

IV‖K‖N 320
pa

⊕

0∗‖K

c

⊕r

A1

pb
⊕

As

c
pb

⊕

0∗‖1

c

⊕r

P1 C1

pb
c

⊕

Pt−1 Ct−1

pb
⊕

Pt Ct

r

⊕

K‖0∗

c

pa

⊕

K

k
T

Initialization Associated Data Plaintext Finalization

Parameters of ASCON-128

Security 128
Key 128
Rate 64

Capacity 256
Rounds (a,b) 12, 6

13/22



(Duplex) Sponges

Caution

The mode is nonce-based: N should not be reused with different
messages.

14/22



(Duplex) Sponges

Ascon: decryption

IV‖K‖N 320
pa

⊕

0∗‖K

c

⊕r

A1

pb
⊕

As

c
pb

⊕

0∗‖1

c

⊕r

P1 C1

pb
c

⊕

Pt−1 Ct−1

pb
⊕

Pt Ct

r

⊕

K‖0∗

c

pa

⊕

K

k
T

Initialization Associated Data Plaintext Finalization

15/22



Constructing a Block Cipher

Constructing a Block Cipher

16/22



Constructing a Block Cipher

Constructing a Block Cipher

Shannon identified two properties that a symmetric cipher should satisfy,
which are still loosely present in nowadays’ designs.

Confusion
The relation between the key, plaintext and ciphertext should be complex.

Diffusion
A minor change in the plaintext should affect the entire ciphertext.

These criteria are rather unquantifiable, which is why nowadays we rely
directly on cryptanalysis studies.

Shannon, “A Mathematical Theory of Cryptography”, 1945
17/22



Constructing a Block Cipher

Round of a Substitution-Permutation Network

Addition of a round key
The round key is derived from the master key using a key scheduling
routine.

Substitution layer =⇒ “confusion”
Applies a small nonlinear S-Box to the bytes / nibbles of the state.

Permutation layer =⇒ “diffusion”
Applies a large linear function to the state.

Linear / nonlinear over F2 or extensions.
18/22



Constructing a Block Cipher

Example: AES

• Standardized by NIST in 2001 to replace DES
• Chosen after an open competition: the candidate’s name was

Rijndael, and its authors Daemen and Rijmen

Round function f

AK SB

S

x
x
x
x

SR

C ←M× C

x
x

x
x

MC

wi−1 xi yi zi wi

• 128 bits of state (16× 8)
• 128, 192 or 256 bits of key
• 10, 12 or 14 rounds

19/22



Constructing a Block Cipher

AES (-128) Key-scheduling

<<S

+ round constants.
• Bytes of the state and key are viewed as members of F28 .
• Operations (except S-Box) are linear over F28 .

20/22



Constructing a Block Cipher

Cryptanalysis

• Cryptanalysis of modes (encryption, hash function) focuses on
generic attacks that would contradict the security proofs /
conjectures, or would have been overlooked

• Cryptanalysis of primitives searches for “anything that distinguishes
this function from random”

There exists a wide array of techniques classified depending on the
type of properties that they exploit:
• Linear cryptanalysis: exploiting biases in Boolean functions
• Algebraic cryptanalysis: exploiting the algebraic expressions of

Boolean functions
• Differential cryptanalysis: exploiting differential properties of

functions
• . . .

21/22



Constructing a Block Cipher

Checklist

• Statistical indistinguishability vs. computational indistinguishability:
definition with one and two games

• IND-CPA, proof that ElGamal is IND-CPA
• Notion of IND-CCA security
• RSA cryptosystem, RSA assumption
• Discrete log, DDH, CDH, the birthday paradox
• Notion of digital signature scheme, unforgeability
• Hash functions and their security (collision, preimage, second

preimage)
• Symmetric encryption (not the definitions of all the modes), block

ciphers

22/22


	Constructing Hash Functions
	(Duplex) Sponges
	Constructing a Block Cipher

