Introduction to Cryptography Part VII: Symmetric Cryptography (Again)

André Schrottenloher

Inria Rennes Team CAPSULE

Constructing Hash Functions

How to transform a block cipher into a compression function

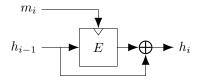
Reminder

A **block cipher** is a family of **permutations** of $\{0,1\}^n$ indexed by a key.

50 years of symmetric cryptography have shown that we know better how to construct **permutations** than **non-invertible functions**.

Reminder

- A compression function is a non-invertible function
 {0,1}^m × {0,1}ⁿ → {0,1}ⁿ (≃ fixed-length hash function).
- Security: collisions, preimages, second preimages.


How to transform a block cipher into a compression function

There are several secure modes (see poly), for example Davies-Meyer:

How to transform a block cipher into a compression function

There are several secure modes (see poly), for example Davies-Meyer:

- Use key as message block input $m_i \in \{0,1\}^m$
- Use block as chaining value input $h_i \in \{0,1\}^n$
- XOR block to the output to make it non-invertible

$$h_i = h_{i-1} \oplus E_{m_i}(h_{i-1})$$

If the block cipher is **ideal**, the DM-based compression function is secure.

Note that...

... it is also very easy to produce insecure modes, for example:

$$f(h_{i-1}, m_i) = E_{m_i \oplus h_{i-1}}(m_i \oplus h_{i-1}) \oplus m_i$$

 \implies one can produce preimages.

Note that...

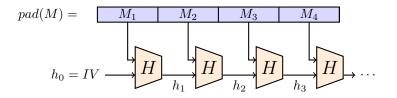
... it is also very easy to produce insecure modes, for example:

$$f(h_{i-1}, m_i) = E_{m_i \oplus h_{i-1}}(m_i \oplus h_{i-1}) \oplus m_i$$

 \implies one can produce preimages.

Attack

• Notice that if $m_i \oplus h_{i-1} = c$, then:


$$f(h_{i-1},m_i)=E_c(c)\oplus m_i$$

• Fix $m_i = E_c(c)$, choose $h_{i-1} = E_c(c) \oplus c$, then:

$$f(h_{i-1},m_i)=0$$

Constructing Hash Functions

Merkle-Dåmgard domain extender

From a fixed-length compression function $H : \{0,1\}^m \times \{0,1\}^n \rightarrow \{0,1\}^n$:

- pad the message using a secure padding
- Separate the message in blocks of size m
- Absorb the blocks by iterating the compression function

Theorem (informal)

If the compression function is (collision, preimage, second-preimage)-resistant, and the padding scheme is secure, the MD extension is resistant.

MD: caution

- Many algorithmic attacks using the iterated construction;
- Proof of security guarantees only *n*/2 bits where *n* is the size of the chaining value, for collisions **and preimages**;
- For more security, one needs a bigger chaining value (128 is not enough).

(Duplex) Sponges

(Dunley) Snonges

The Sponge: hash functions

sponge

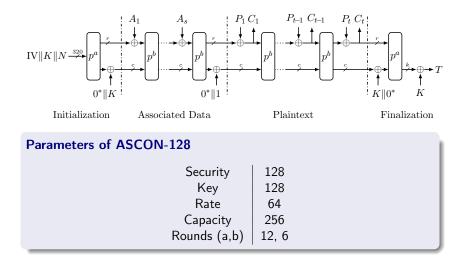
- f is a cryptographic permutation
- Speed of absorption determined by the rate r
- Security determined by the capacity c

Attacks (examples)

Collisions

Find two pairs of messages such that the inner part collides: $2^{c/2}$.

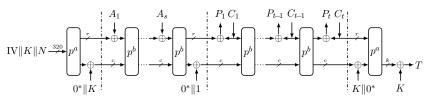
Preimages


Compute forwards from the initial state and backwards from the output: try to collide on the inner part: $2^{c/2}$.

ASCON-AEAD

- Winner of the NIST lightweight cryptography competition
- Based on a **Duplex Sponge** mode

https://csrc.nist.gov/csrc/media/Presentations/2023/the-ascon-family/imagesmedia/june-21-mendel-the-ascon-family.pdf


ASCON-AEAD

Caution

The mode is **nonce-based**: *N* should not be reused with different messages.

Ascon: decryption

Associated Data

Plaintext

Finalization

Constructing a Block Cipher

Constructing a Block Cipher

Shannon identified two properties that a symmetric cipher should satisfy, which are still loosely present in nowadays' designs.

Confusion

The relation between the key, plaintext and ciphertext should be complex.

Diffusion

A minor change in the plaintext should affect the entire ciphertext.

These criteria are rather unquantifiable, which is why nowadays we rely directly on **cryptanalysis** studies.

Shannon, "A Mathematical Theory of Cryptography", 1945

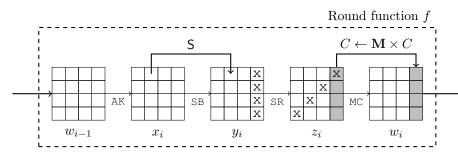
Round of a Substitution-Permutation Network

Addition of a round key

The round key is derived from the master key using a **key scheduling** routine.

Substitution layer \implies "confusion"

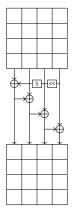
Applies a small nonlinear S-Box to the bytes / nibbles of the state.


Permutation layer \implies "diffusion"

Applies a large linear function to the state.

Linear / nonlinear over \mathbb{F}_2 or extensions.

Example: AES


- Standardized by NIST in 2001 to replace DES
- Chosen after an open competition: the candidate's name was Rijndael, and its authors Daemen and Rijmen

- 128 bits of state (16 \times 8)
- 128, 192 or 256 bits of key
- 10, 12 or 14 rounds

Constructing a Block Cinher

AES (-128) Key-scheduling

+ round constants.

- Bytes of the state and key are viewed as members of \mathbb{F}_{2^8} .
- Operations (except S-Box) are linear over \mathbb{F}_{2^8} .

Cryptanalysis

- Cryptanalysis of **modes** (encryption, hash function) focuses on generic attacks that would contradict the security proofs / conjectures, or would have been overlooked
- Cryptanalysis of **primitives** searches for "anything that distinguishes this function from random"

There exists a wide array of techniques classified depending on the type of properties that they exploit:

- Linear cryptanalysis: exploiting biases in Boolean functions
- Algebraic cryptanalysis: exploiting the algebraic expressions of Boolean functions
- Differential cryptanalysis: exploiting differential properties of functions

• ...

Checklist

- Statistical indistinguishability vs. computational indistinguishability: definition with one and two games
- IND-CPA, proof that ElGamal is IND-CPA
- Notion of IND-CCA security
- RSA cryptosystem, RSA assumption
- Discrete log, DDH, CDH, the birthday paradox
- Notion of digital signature scheme, unforgeability
- Hash functions and their security (collision, preimage, second preimage)
- Symmetric encryption (not the definitions of all the modes), block ciphers