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Context

Recap

The public-key cryptosystems we have seen so far:
• Public-key encryption: RSA, ElGamal
• Digital signatures: RSA FDH

are based on:

• the RSA assumption (RSA)
• the Decisional Diffie-Hellman assumption in well-chosen Abelian

groups (safe-prime, ECC)

These assumptions:
• have been here for a long time
• are well understood
• are trusted
• allow quite efficient schemes (key sizes, computation time, etc.)
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Context

Other schemes

There exists many other schemes, depending on different security
assumptions, some well understood, others less (recall:
trust(t) =

∫ t

0 cryptanalysis dt).

They have been around for as long as RSA / Dlog (ex.: McEliece
code-based cryptosystem from 1978), but received less attention and
did not compete well with them.

With a few exceptions (e.g., hash-based signature standards), anything
else than RSA / Dlog was purely theoretical research until quite
recently.

4/20



Context

Quantum computing

Quantum computing is a computational model which is equivalent to
Turing machines regarding calculability, but apparently not (we don’t
have proof) regarding complexity.

• Initiated in the 80s with the prospect of simulating a complex
quantum mechanical system with a “controlled” one

=⇒ e.g., to understand protein folding

• Could it also be used to speed up classical computations?

Deutsch, “Quantum theory, the Church-Turing principle and the universal
quantum computer”, Proc. R. Soc. Lond. 1985
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Context

Shor’s algorithm

• In the 1990s, the quantum computing model was well-defined and
people started finding quantum speedups on some computing
tasks.

1994: Shor’s algorithm

• Factorization of n-bit integers in O
(
n3
)

operations
• Solving n-bit Dlog instances in any Abelian group in O

(
n3
)

operations

1996: Grover’s algorithm

• Solve an exhaustive search problem in the
√
· of the classical time

• Ex.: n-bit preimage search in O
(
2n/2

)
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Context

Consequences for cryptography

Quantum computing is not all-powerful, but performs surprisingly well
for some crypto problems.

Public-key

• Shor’s algorithm completely breaks RSA and Dlog-based crypto
(about 109 operations required to factor 2048-bit RSA).

=⇒ need to develop post-quantum crypto based on other assumptions.

Secret-key

• Grover’s algorithm reduces the generic security levels and the costs
of some attacks

• Other attacks occur but they are typically less spectacular than Shor
=⇒ need to patiently evaluate security against quantum attackers.
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Context

Post-quantum cryptography

Post-quantum crypto = crypto that remains secure in the presence of a
quantum adversary.

This is not science-fiction:
• IBM already possesses quantum computer with a few hundreds

qubits.
• The first (NIST) standards for PKE and signatures were completed

last year, deployment is ongoing.
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Bad-LWE

A bad PKE (do not use it!)

× =A s b

• Choose a public matrix A ∈ Zℓ×n
q at random

• Choose s ∈ Zn
q at random: our private key

• Let (A, b := As) be our public key
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Bad-LWE

Still a bad PKE (do not use it!)

KeyGen:
• Private key: random s ∈ Zn

q
• Public key: random matrix A, As = (ai · s) := (bi)

Encrypt m ∈ {0, 1}:
• Pick a random vector r ∈ {0, 1}ℓ
• Return c1, c2 := rA, (m + r · b)

Decrypt c = (c1, c2) ∈ Zn+1
q :

• Return m = c2 − c1 · s

c2 − c1 · s = (m + r · b)− (rA) · s
= m + (r · b)− r((A · s︸ ︷︷ ︸

=b

) = m
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Bad-LWE

Why is this broken?

Let’s do a Chosen-plaintext attack and always encrypt 0. We observe
samples:

rA, (rA) · s (1)

for unknown r and s.
After enough samples we have R,Rs: invert R to find s.

The scheme is broken because linear algebra is easy. How can we
complicate it?
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The LWE Problem

“Small” distribution: a discrete Gaussian

Definition
Let s > 0, c ∈ Rn, x ∈ Rn, we define
• ρs,c(x) = e−π∥x−c∥

2/s2 ,
• Ds,c(x) = ρs,c(x)/s

n.
Ds,c is the density of probability of the Gaussian distribution of center c
and variance ns2/(2π) (of parameter s).

Lemma

Let s > 0, Prx←Ds

[
∥x∥ ≥

√
ns
]
≤ 2−n.

We use the Discrete Gaussian to generate small numbers in Zq (close to
0).
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The LWE Problem

Learning with errors (LWE)

The LWE distribution DLWE
n,q,α(s) is the discrete distribution over Zn+1

q

obtained by:
• Sample a ←↩ U(Zn

q)

• e is sampled through a gaussian distribution on Zℓ.
• Return (a, (a · s) + e mod q)

Search-LWE
Let s ←↩ U(Zn

q). Given samples from DLWE
n,q,α(s), find s.

Decision-LWE
Let s ←↩ U(Zn

q). Distinguish between DLWE
n,q,α(s) and U(Zn

q × Zq).
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The LWE Problem

LWE (ctd.)

× + =A s e b

With several samples:
• Choose a public matrix A ∈ Zℓ×n

q at random
• Choose s ∈ Zn

q at random and a “small” error e ∈ Zℓ
q

• Return A, b := (As + e)

Theorem
Decision-LWE and search-LWE are equivalent if q = poly(n).
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Regev’s PKE
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Regev’s PKE

LWE: encryption scheme

Let n, ℓ, q be integers with q prime and ℓ ≥ 4(n + 1) log2 q and
α ∈]0, 1/(8ℓ)[.

Define:
• Compress: decodes an integer mod q into 0 if it’s closer to 0 or 1 if

it’s closer to q/2
• Decompress: encodes 0 to 0 and 1 to q/2

KeyGen:
• Private key: random s ∈ Zn

q
• Public key: random matrix A, As + e = (ai · s + ei) := bi with e

“small” according to discrete Gaussian DZn,α
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Regev’s PKE

LWE: encryption scheme

Secure

Efficient
Encrypt m ∈ {0, 1}:
• Pick a random vector r ∈ {0, 1}ℓ
• Return c1, c2 := rA, (Decompress(m) + r · b)

Decrypt c = (c1, c2) ∈ Zn+1
q :

• m = Compress(c2 − c1 · s)

Why this works:

c2 − c1 · s = (Decompress(m) + r · b)− (rA) · s
= Decompress(m) + r(As + e)− rAs
= Decompress(m) + r · e︸︷︷︸

Small
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Regev’s PKE

Security

Theorem
Regev’s PKE is IND-CPA if decisional / search-LWE is hard.

• Is it IND-CCA? No (see TD)
• The scheme is inefficient (1 bit of message only), but serves as a

basis for more advanced stuff

Security

Using a Gaussian error, we have a proof that an efficient algorithm for
LWE would break a gap shortest vector problem on Euclidean lattices.

This is why LWE belongs to lattice-based crypto.
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