
Organization

• 6 lectures (André Schrottenloher)
• 7 TDs (Clémence Chevignard)
• 2 grades TBD

Course material (organization, lecture notes, slides, TDs. . .) on:
https://andreschrottenloher.github.io/pages/teaching.html

E-mail:
andre(dot)schrottenloher(at)inria(dot)fr

1/33

https://andreschrottenloher.github.io/pages/teaching.html

Content of this course

• Perfect security, rigorous definition of security =⇒ this lecture
• Public-key cryptography: RSA
• Discrete logarithm problem, Diffie-Hellman key-exchange, ElGamal

cryptosystem
• (LWE) (if time)
• Digital signatures
• Symmetric cryptography

2/33

Introduction to Cryptography
Part I: Introduction – Defining Security

André Schrottenloher

Inria Rennes
Team CAPSULE

1 History and Principles

2 Perfect Security

3 What is an Adversary?

4 Indistinguishability

4/33

What is crypto today?

Definition
Protect information transmitted through insecure channels in presence
of adversaries with the power to listen to and corrupt the transmitted
messages.

This science borrows tools from:
• Information theory;
• Complexity theory and algorithms;
• Probabilities;
• Proof systems;
• (Computational) algebra;
• Quantum information theory.

5/33

History and Principles

History and Principles

6/33

History and Principles

Historical ciphers

Caesar

Al-Kindi (born
801 AD)

Caesar cipher
• Shift the alphabet by a fixed number
• Easy to break if you know the trick (only 26

possibilities, visible patterns. . .)

Substitution cipher
• Choose a permutation of the letters of your

alphabet
• 26! possibilities
• Break by frequency analysis, bigrams and
probable words

Pictures from Wikimedia Commons
7/33

History and Principles

Historical ciphers (ctd.)

Vigenère cipher
• Shift (like Caesar) but using a random, repeated keyword.
• Cryptanalysis?

8/33

History and Principles

Rotor machines

After the typewriter, encryption based on rotor machines (e.g., the
Enigma family).
• Rotor encodes the key
• Typed symbol encrypted with the next symbol on the rotor
• Rotor moves as you type, changing the key each time

Cryptanalysis of Enigma

• First breaks in the 1930s by Polish cryptographers
• First “cryptologic bombs” used for cipher-breaking
• During the war: upgrade of the bombs by the British (Turing) & the

US, allowing to break the 4-rotor version

9/33

History and Principles

Dawn of modern cryptography (ca. 1950)

Turing: co-inventor of modern-day computer
science, well-known for his code-breaking work
during WWII

Shannon: information theory, information-theoretic
security, and cipher design.

Pictures from Wikimedia Commons
10/33

History and Principles

Dawn of asymmetric cryptography (ca. 1970)

Diffie & Hellman: introduction of the
Diffie-Hellman key-exchange, and mathematical
foundations of public-key cryptography

Rivest, Shamir & Adleman: RSA cryptosystem
(which became the most popular)

Credit: the Royal Society (Wikimedia Commons)
11/33

History and Principles

The modern era

Crypto is now everywhere:
• Network protocols (HTTPS, SSL, TLS, PGP, wifi, mobile phone

networks)
• Encrypted messaging apps
• Hardware: credit cards, DVD, Blu-ray
• Anti-piracy software

With applications beyond secure communication:
• Digital signatures
• Secure multi-party computation
• Electronic voting
• Proofs of knowledge

For (most of) these use cases there exists well-established, publicly
audited, standardized designs (RSA, ECC, AES-GCM).

And even cryptocurrency.
12/33

History and Principles

Modern-day crypto constraints

Designing secure cryptography is not easy, but what’s most difficult is to
make it secure and cost-efficient (“lightweight”).
• Latency: the time to perform a key-exchange is counted in

milliseconds;
• Energy: crypto on small, battery-operated devices has to use the

minimal number of operations possible;
• Circuit size: crypto on embedded chips (e.g., smart cards) has to

use the smallest possible circuits. This puts also constraints on key
sizes.

Our goal nowadays is to minimize computational resources for a given
security level.

13/33

History and Principles

Cryptography building blocks

Primitives
A primitive is a building block that offers a “low-level” functionality.
Example: an asymmetric / symmetric cipher, a signature, a block cipher,
stream cipher, etc.

Protocols
A protocol specifies an entire communication process. It makes use of
primitives as “black boxes” (for example, you can use any block cipher).

The security of a protocol is reduced to the security of the primitives: if
the primitives are secure, the protocol is secure.

The security of a primitive relies on computational conjectures (different
in symmetric / asymmetric crypto).

14/33

History and Principles

Crypto design process

1. Some people design a primitive
2. They do their own security analysis
3. They publish the result and make security claims
4. Everybody else tries to cryptanalyze (and contradict the claims)
5. After some time, we gain trust, and some institution (ISO, IETF)

may standardize the scheme

Trust =

∫ +∞

t=0
Cryptanalysis effort dt

15/33

History and Principles

Kerckhoffs’ principles (1883)

1. Le système doit être matériellement, sinon mathématiquement,
indéchiffrable

2. Il faut qu’il n’exige pas le secret, et qu’il puisse sans inconvénient
tomber entre les mains de l’ennemi.

=⇒ a specification should be public (ex. ISO / IETF / NIST standard)

3. La clef doit pouvoir en être communiquée et retenue sans le secours
de notes écrites, et être changée ou modifiée au gré des correspondants.

4. Il faut qu’il soit applicable à la correspondance télégraphique.

5. Il faut qu’il soit portatif, et que son maniement ou son
fonctionnement n’exige pas le concours de plusieurs personnes.

6. Enfin, il est nécessaire [...] que le système soit d’un usage facile [...].

16/33

Perfect Security

Perfect Security

17/33

Perfect Security

Symmetric cipher

Let K,M, C be the key space, plaintext space and ciphertext space.

A symmetric cipher is a triple of PT algorithms KeyGen,Enc,Dec with
signature: 

KeyGen : ∅ → K
Enc : K ×M→ C
Dec : K × C →M

and satisfying the correctness property:

∀k ∈ K,∀m ∈M,Dec(k ,Enc(k ,m)) = m .

We assume that all ciphertexts are accessible.

The algorithms KeyGen,Enc,Dec are randomized, poly-time and public (per
Kerckhoffs’ principles).

18/33

Perfect Security

Perfect security (= information-theoretic security)

A symmetric cipher is perfectly secure if:
• for any random variable M overM;
• any message m ∈M;
• any ciphertext c ∈ C:

Pr [M = m|Enc(KeyGen,M) = c] = Pr [M = m] .

A symmetric cipher is perfectly secure if for any
m1,m2, c ∈M×M× C:

Pr
k←KeyGen

[Enc(k,m1) = c] = Pr
k←KeyGen

[Enc(k ,m2) = c] .

Proof in TD.
19/33

Perfect Security

The One-time Pad (Vernam’s cipher)

K =M = C = {0, 1}n
KeyGen: k ←↩ U(K)
Enc(k,m) = m ⊕ k
Dec(k, c) = c ⊕ k

It’s correct:

∀k ∈ K,∀m ∈M,Dec(k ,Enc(k ,m)) = m .

Lemma
The One-Time Pad has perfect security.

Proof: let K = KeyGen()

∀m, c ,Pr [Enc(K ,M) = c |M = m] = Pr [M ⊕ K = c |M = m]

= Pr [m ⊕ K = c] = Pr [K = m ⊕ c] .

K is uniform, so whichever c and m one has: Pr [K = m ⊕ c] = 2−n.

20/33

Perfect Security

The One-time Pad (Vernam’s cipher)

K =M = C = {0, 1}n
KeyGen: k ←↩ U(K)
Enc(k,m) = m ⊕ k
Dec(k, c) = c ⊕ k

It’s correct:

∀k ∈ K,∀m ∈M,Dec(k ,Enc(k ,m)) = m .

Lemma
The One-Time Pad has perfect security.

Proof: let K = KeyGen()

∀m, c ,Pr [Enc(K ,M) = c |M = m] = Pr [M ⊕ K = c |M = m]

= Pr [m ⊕ K = c] = Pr [K = m ⊕ c] .

K is uniform, so whichever c and m one has: Pr [K = m ⊕ c] = 2−n.
20/33

Perfect Security

The One-time Pad (ctd.)

The One-Time Pad is not a very practical cipher . . .

• You can only use the key once;
• How can you transmit such a key?

It would be much better to have a small key that you could somehow
expand, i.e., a stream cipher.

=⇒ but can such a cipher have perfect security?

21/33

Perfect Security

The One-time Pad (ctd.)

The One-Time Pad is not a very practical cipher . . .

• You can only use the key once;
• How can you transmit such a key?

It would be much better to have a small key that you could somehow
expand, i.e., a stream cipher.

=⇒ but can such a cipher have perfect security?

21/33

Perfect Security

Shannon’s theorem

Lemma
Perfect security implies |K| ≥ |C| ≥ |M|.

Theorem
Let KeyGen,Enc,Dec be a symmetric cipher on K,M, C such that
|K| = |M| = |C|. It has perfect security iff:
• Each key is chosen with probability 1/|K|
• For all m ∈M, c ∈ C, there is a unique k such that Enc(m, k) = c .

Proof in TD
22/33

What is an Adversary?

What is an Adversary?

23/33

What is an Adversary?

A cryptographic scheme

. . . has several participants nicknamed Alice, Bob, Charlie, etc. (In this
course: Alice & Bob).

The adversary (Eve) may listen to or modify the exchanged
communications between Alice and Bob.
• Alice, Bob and Eve are algorithms / Turing machines
• The algorithms are randomized

24/33

What is an Adversary?

Definition of security

An adversary can always win with some probability, for example they
may guess the key correctly.
But an adversary is not successful unless they run in polynomial time,
and succeed with large probability.

Definition
A scheme is (t, ε)-secure if any adversary running in time t can attack it
with probability at most ε.

Let n be the security parameter of the scheme:
• efficient = poly(n) (PPT algorithm)
• negligible = o(n−c) for any constant c , i.e., smaller than any inverse

polynomial

“Attack” to be defined later!
25/33

Indistinguishability

Indistinguishability

26/33

Indistinguishability

Statistical indistinguishability

Let X ,Y be two random variables on a set A. Their statistical distance
is:

∆(X ,Y) =
1
2

∑
a∈A

|Pr [X = a]− Pr [Y = a] | .

It’s indeed a distance.

Tow distributions D0,D1 are statistically indistinguishable if there is a
negligible function negl such that: ∆(D0,D1) ≤ negl(n).

=⇒ this is a strong property. In practice, we need to relax it into the
notion of computational indistinguishability.

27/33

Indistinguishability

Computational indistinguishability

Two distributions are computationally indistinguishable if no efficient
algorithm can distinguish from them.

=⇒ given access to samples of D, decide if D = D0 or D = D1.

We formalize this using games.

28/33

Indistinguishability

Distinguishing games
Let D0,D1 be two distributions over {0, 1}n. The distinguishing games
G0,G1 are defined as follows.

The adversary D communicates with a challenger C.

x ←↩ Db

Return b′

• During the game D may perform a query: the challenger will return
x ←↩ Db

• At the end D returns a bit b′

The advantage of D is:

Adv(D) = |Pr
[
D G0−→ 1

]
− Pr

[
D G1−→ 1

]
| .

D is a distinguisher if the advantage is non-negligible.

29/33

Indistinguishability

Second definition

In this second definition we use a single game G .

Choose b ←↩ U(0, 1)
x ←↩ Db

Return b′

• Initialization: C chooses a bit b ∈ {0, 1} u.a.r.
• Queries: C will respond with x ←↩ Db

• Finalization: D will return a bit b′. If b = b′, D wins the game

D is a distinguisher if Pr [Win] ≥ 1/2 + ε for some non-negligible ε.

30/33

Indistinguishability

Computational indistinguishability

D0,D1 are computationally indistinguishable if ∀ PPT adversary D:

|Pr
[
D G0−→ 1

]
− Pr

[
D G1−→ 1

]
| ≤ negl(n)

This is equivalent to: ∀ PPT adversary D:

|Pr [Win]− 1/2| ≤ negl(n)

Proof of the equivalence by double reduction:
1. from a PPT distinguisher A for the first definition, create a PPT

distinguisher for the second
2. conversely

31/33

Indistinguishability

Proof of the equivalence

Let A be a distinguisher for the second definition. Let A′ that acts
exactly like A in the game G .

Adv(A′) = Pr [b′ = 1|b = 0]− Pr [b′ = 1|b = 1]

= |1− Pr [b′ = 0|b = 0]− Pr [b′ = 1|b = 1] |
= |1− 2Pr [b′ = 0 ∧ b = 0]− 2Pr [b′ = 1 ∧ b = 1] |
= |1− 2Pr [Win] | ≥ 2ε .

Let A′ be a distinguisher for the first definition. Let A that acts exactly
like A′ in the games G0,G1.

Pr [Win] = Pr [b′ = 0 ∧ b = 0] + Pr [b′ = 1 ∧ b = 1]

=
1
2

(Pr [b′ = 0|b = 0] + Pr [b′ = 1|b = 1])

=
1
2

(1 + Adv(A′)) ≥ 1/2 + ε/2

We need to assume Pr [b′ = 1|b = 1] ≥ Pr [b′ = 1|b = 0]: otherwise we
modify A′ to return 1− b′.

32/33

Indistinguishability

Proof of the equivalence
Let A be a distinguisher for the second definition. Let A′ that acts
exactly like A in the game G .

Adv(A′) = Pr [b′ = 1|b = 0]− Pr [b′ = 1|b = 1]

= |1− Pr [b′ = 0|b = 0]− Pr [b′ = 1|b = 1] |
= |1− 2Pr [b′ = 0 ∧ b = 0]− 2Pr [b′ = 1 ∧ b = 1] |
= |1− 2Pr [Win] | ≥ 2ε .

Let A′ be a distinguisher for the first definition. Let A that acts exactly
like A′ in the games G0,G1.

Pr [Win] = Pr [b′ = 0 ∧ b = 0] + Pr [b′ = 1 ∧ b = 1]

=
1
2

(Pr [b′ = 0|b = 0] + Pr [b′ = 1|b = 1])

=
1
2

(1 + Adv(A′)) ≥ 1/2 + ε/2

We need to assume Pr [b′ = 1|b = 1] ≥ Pr [b′ = 1|b = 0]: otherwise we
modify A′ to return 1− b′.

32/33

Indistinguishability

Proof of the equivalence
Let A be a distinguisher for the second definition. Let A′ that acts
exactly like A in the game G .

Adv(A′) = Pr [b′ = 1|b = 0]− Pr [b′ = 1|b = 1]

= |1− Pr [b′ = 0|b = 0]− Pr [b′ = 1|b = 1] |
= |1− 2Pr [b′ = 0 ∧ b = 0]− 2Pr [b′ = 1 ∧ b = 1] |
= |1− 2Pr [Win] | ≥ 2ε .

Let A′ be a distinguisher for the first definition. Let A that acts exactly
like A′ in the games G0,G1.

Pr [Win] = Pr [b′ = 0 ∧ b = 0] + Pr [b′ = 1 ∧ b = 1]

=
1
2

(Pr [b′ = 0|b = 0] + Pr [b′ = 1|b = 1])

=
1
2

(1 + Adv(A′)) ≥ 1/2 + ε/2

We need to assume Pr [b′ = 1|b = 1] ≥ Pr [b′ = 1|b = 0]: otherwise we
modify A′ to return 1− b′.

32/33

Indistinguishability

Recap

• The one-time pad has perfect security
• Perfect security implies large keys
• We use notions of computational security
• Indistinguishability: statistical or computational
• Statistical Indistinguishability is defined by the statistical distance
• Computational indistinguishability is defined by games

33/33

	History and Principles
	Perfect Security
	What is an Adversary?
	Indistinguishability

