
Introduction to Cryptography
Part IV: Digital Signatures

André Schrottenloher

Inria Rennes
Team CAPSULE

[0]

1 Hash Functions

2 Digital signatures

3 RSA Signatures

2/23

Hash Functions

Hash Functions

3/23

Hash Functions

Hash functions

A hash function is a public function that takes a variable-length
message and outputs a fixed-length digest: H : {0, 1}∗ → {0, 1}n.

“General” hash functions are used whenever you need a random-looking
function:
• Hash tables;
• Randomized algorithms (e.g., Pollard’s rho method).

They are not enough for cryptography: we need cryptographic hash
functions.

4/23

Hash Functions

Hash functions (ctd.)

In the context of symmetric cryptography, a hash function is secure if it
offers a generic security level against:

• Preimage attacks;
• Second preimage attacks;
• Collision attacks.

Generic = there should be no better attack than those we have against a
truly random function.

In other words we want the behavior to be ideal (typical requirement in
symmetric crypto).

5/23

Hash Functions

Preimage resistance

Fix H : {0, 1}∗ → {0, 1}n.

Preimage resistance
For t ← {0, 1}n, it should be difficult to find m such that t = H(m).
• By brute force, this takes time O(2n) (to succeed with constant

probability)
• So it should take time O(2n)

Example: password authentication.
• One stores only H(password).
• An attacker having access to the database cannot find the

passwords.

6/23

Hash Functions

Second preimage resistance

Fix H : {0, 1}∗ → {0, 1}n.

For x ← {0, 1}m, it should be difficult to find y ̸= x such that
H(y) = H(x).
• By brute force, this takes time O(2n) (to succeed with constant

probability)

Example: signatures (this lecture).

7/23

Hash Functions

Collision resistance

Collision resistance
• Producing a collision (pair x ̸= y such that H(x) = H(y)) should

take time O
(
2n/2

)
(birthday paradox!)

This is the same as long as the input size is ≥ n bits.
8/23

Hash Functions

On the existence of collisions / preimages

There exists collisions & preimages (the message space is much bigger
than the hash space).

There exists an algorithm that returns in constant time a collision for
any hash function.
=⇒ however, we don’t know how to write it down.

9/23

Hash Functions

Some examples

MD5 (broken)
• 128-bit hash (RFC 1321, Rivest, 1992)
• Collisions found (Wang, Yu, 2005)
• Forgery of certificates (Stevens et al., 2009)

SHA-0 (broken)
• 160-bit hash (NSA, 1993)
• Collisions (theoretical) in 1998 (Joux, Chabaud)

SHA-1 (broken)
• 160-bit hash
• Theoretical collisions in 2005 (Wang et al.)
• Practical collisions in 2017 (Stevens et al., 2009)
• Chosen-prefix collisions (Leurent, Peyrin, 2020)
• Still used a lot . . .

10/23

Hash Functions

Current standards

SHA-2
• Published by NSA in 2001
• Family of hash functions of 224, 256, 384, 512 bits

SHA-3
• a.k.a. Keccak, winner of an open competition organized by NIST
• Sponge function, published in 2015
• Outputs of 224, 256, 384, 512 bits

11/23

Digital signatures

Digital signatures

12/23

Digital signatures

Motivation

IND-CCA2 asymmetric encryption offers only confidentiality of
messages.

Digital signatures (DS) offer:
• authenticity
• integrity

What are some constraints associated to a digital signature?
• It should depend on the signed message (otherwise you can copy it)
• It should depend on some secret
• Everybody should be able to verify it

13/23

Digital signatures

Definition

KeyGen : 1n 7→ sk, pk
Sign : sk, h 7→ σ
Verify : pk, σ, h 7→ {0, 1}

Correctness: ∀m, Verify(pk,m, Sign(m, sk)) = 1.

sk, pk = KeyGen(1λ) pk

σ = Sign(sk, h)
σ

b = Verify(pk, σ, h)
Accepte si b = 1

14/23

Digital signatures

Breaking authenticity

An attacker’s power: chosen message attack.
• The attacker can obtain signatures σi = Sign(sk, hi) for chosen

messages hi

An attacker’s goal: existential forgery.
• Produce some new valid message / signature pair (h, σ):

h /∈ {h1, . . . , hq}

The new message does not need to have any meaning, for it to be a
meaningful forgery.

15/23

Digital signatures

EUF-CMA
Existential unforgeability against chosen-message attacks (EUF-CMA) is
defined by a security game played by C and A.
• Initialization: C generates a pair pk, sk← KeyGen(1n) and gives pk

to A
• Queries: at any point, A can choose hi and obtain the signature

σi = Sign(sk, hi)
• Forgery: A sends a pair h∗, σ∗ to C and wins if:{

Verify(sk, h∗, σ∗) = 1
h∗ /∈ {h1, . . . , hq}

The EUF-CMA advantage of A is defined as:

AdvEUF−CMA(A) = |Pr [A wins] | .

The DS scheme is EUF-CA secure iff any PPT adversary has a negligible
advantage.

16/23

Digital signatures

Theorem: domain extension with hash-and-sign

Theorem
Let S := (KeyGen, Sign,Verify) is a secure signature for short messages
in {0, 1}n. Let H be a collision-resistant hash. Define S ′:

KeyGen′ = KeyGen
Sign′(sk,m) = Sign(sk,H(m))

Verify′(pk,m, σ) = Verify(pk,H(m), σ)

17/23

Digital signatures

Hash-and-sign security

What happens if:
• The adversary can find second preimages in the hash function?

=⇒ Choose a message m. Ask for σ = Sign(sk,H(m)); find second
preimage m′ such that H(m′) = H(m); now (m′, σ) is a forgery.

• The adversary can find preimages?
=⇒ it’s stronger than second preimages anyway
• The adversary can find collisions?

=⇒ find (m,m′) such that H(m) = H(m′) = t. Ask for
σ = Sign(sk,H(m)). Now (m′, σ) is a forgery. impersonate

Example The Flame malware (2012) used a chosen-prefix collision on
MD5 to sign some of its components by impersonating a Microsoft
certificate.

18/23

Digital signatures

Constructing signatures

Contrary to PKE, a one-way function is enough to construct signatures.
• Hash-based signatures: SPHINCS+ (post-quantum)

More practical: all standard public-key assumptions like RSA? DLOG and
also the post-quantum ones.

19/23

RSA Signatures

RSA Signatures

20/23

RSA Signatures

Basic RSA signature

KeyGen:
• Choose primes P,Q, N = PQ, choose e, d with ed = 1
(mod ϕ(N)).

• sk = (N, d)
• pk = (N, e)

Sign m ∈ Z∗
N

• Return σ = md (mod N)

Verify m ∈ Z∗
N , σ

• Check that σe = m (mod N)

This is not secure.

21/23

RSA Signatures

Attacks on basic RSA signature

Attack 1 Take any value t, then (te , t) is a valid message-signature pair
=⇒ a “no-message” attack.

Attack 2 For any m ∈ Z∗
N , we can forge a signature of m.

• Ask to sign m1 ∈ Z∗
N

• Ask to sign m2 = m(m1)
−1 mod N

• Compute σ = σ1σ2

22/23

RSA Signatures

RSA-FDH

KeyGen:
• Generate N = PQ, and e, d
• Construct a CRHF H : {0, 1}∗ → ZN

• sk = (N, d), pk = (N, e)

Sign m ∈ {0, 1}∗

• Return σ = H(m)d mod N

Verify m ∈ {0, 1}∗, σ
• Check that σe = H(m) mod N

Previous attacks do not apply:
• Signatures are not malleable anymore
• If we take t and compute te , we would need to find m such that

H(m) = te : a preimage problem.

23/23

	Hash Functions
	Digital signatures
	RSA Signatures

