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The DL Problem

Discrete Logarithm
Let G, - be a multiplicative group of order g and g a known element.
Given g? (where a <= U(Z)), find a.

e a — g? is always easy
e g? — ais sometimes hard, but not always

Example: take N, k prime with N, a subgroup of (Zy, +) generated by k.

e We can compute multiplicative inverses
e ka mod N — a mod N is easy
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Safe primes

Remark: G in the DL problem can always be replaced by a cyclic group
(generated by g).

Historical choice for DL groups:

Work in the multiplicative group Z*, where p is prime
Choose a subgroup of Z7 with large prime order
Take g a generator of this group

A safe prime p is such that (p — 1)/2 is prime.
This guarantees the existence of a large subgroup, in which we work.

(p—1)/2 is called a Sophie Germain prime.
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Interlude: Pohlig-Hellman reduction

Reduce the DLP in a group of order n = p;p> to the DLP in groups of
order p; and p; (if p1, p2 are coprime).

Algorithm:
o Let h=g?
e Compute DL of hP2 = (gP2)? in the subgroup generated by gP? (of
order py)
= geta mod p;
e Compute DL of hP* = (gP)? in the subgroup generated by g”* (of
order py)
—> get a mod p,
e Compute a using the CRT (since py, po are coprime).

—> we want to work in a group of large prime order.
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Interlude: Pohlig-Hellman for a prime power

If e > 2, reduce the DLP in a group of order n = p® to e instances of
DLP in a group of size p.

Algorithm (for h = g2):
1. Initialize xg =0 .
2. Compute v = gP" " which has order p
3. Forall k=0,...,e—1do:
e Compute the DL dy of hx = (g_th)Peflfk in the group (v)
generated by ~
e Set Xk4+1 = Xk + ,Dkdk
Then x. is the DL. Indeed:

71de—1

,yde—l _ (g—Xe71 h) — h= gXe—l,yde — gXe—lJl‘pe

The non-trivial part is to prove that hy € (), which we have to prove by
induction over k. J
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Interlude: DL in Z; vs. elliptic curves

e The DL in Zj can be solved in subexponential time using index
calculus / sieving methods (similarly to factoring).
e p has to be large (2048-4096 bits) to ensure security.
Nowadays, we don't use DL in Z; anymore, but groups of points on

elliptic curves.

An elliptic curve (on Z,) is the set of points (x, y) defined by an
equation of the form y? = x3 + ax + b (+ a ‘point at infinity”). It can be
equipped with an additive group law.

e When the elliptic curve is well-chosen, the DL is hard.
e The best known algorithms are exponential (this lecture + TD).
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Solving the DLP

e The DLP can be solved in any group of order g in time O(,/q).
e This is the best complexity known that works for any group.

An algorithm
Suppose h = g? and g are given.
1. Compute h"' for many random integers i
2. Compute g/ for many random integers j _
3. Look for a pair (i, /) such that j # j and h' = g/
From such a pair: g2 =g/ = ai=j modqg = a=ji"! modg
(problem solved).

Next: compute the complexity of this approach.
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Interlude: birthday paradox

What is the probability of two students (among 20) having the same
birthday?

1— (1)(1 —1/365)(1 —2/365) - - (1 — 19/365) ~ 0.41 .

Lemma
Let y1,...,ye be random (uniform) samples in a set of size N. A collision
is a pair (y;, y;) such that y; = y; and i # j. There exists a collision:

e With prob. at most ¢2/2N

e With prob. at least % if £ <+2N

Intuition:
e Each pair has probability 1/N of forming a collision
e There are £2/2 pairs = this gives the upper bound
e But they are not independent

The constant is not that important. It can be made more precise.
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Interlude: birthday paradox (ctd.)
Write NoColl; the event “no collision among y1,...,y;."
Pr[NoColl;] = Pr[NoColh]-Pr [NoColl| NoColh] - - - Pr [NoColl;|NoColl,—1] .

Also: Pr[NoColh] =1, and Pr[NoColl;+1|NoColl;] =1 — i/N (the new
element must be different from the i previous ones)

-1
= Pr[NoCollj] = H(l —i/N)
i=1
Now we do some bounding: Vi,1 —i/N < e—i/N.
Pr[NoColly] < e~ Xi' /N = g=Ht=1)/2N

And for x <1,1—x/2>e™™

-1
Pr[Coll] =1 — Pr[NoColly] > 1 — e ‘¢=1)/2N > (T\/) .
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Conclusion

Powers of h and g give us random elements of the group (heuristically).
A collision occurs after computing O(\/E) powers. This algorithm has:

o Time (’3(\/6) (optimal, up to small factors)
e Memory O(,/q) (not optimal)

We can do better: O(,/q) time and O(1) memory (see TD).
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The Diffie-Hellman key-exchange

Public parameters: a cyclic group G and a generator g of order g.

w o

1. Alice chooses a € {1,...,q — 1} Bob chooses b € {1,...,qg — 1}
2. Alice sends g —

3. < Bob sends g°

4. Alice computes (g°)? Bob computes (g?)®

k = (gP)® = (g2)° is the shared secret key.

Do not use this in practice. )
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DH security

e The adversary observes only g2, g” where a, b+ U({1,...,q — 1}).
e Recovering g2° = the computational DH problem (CDH) J

Many security proofs are based instead on the decisional DH problem
(DDH).

Distinguish the two cases:

e RAND: a distribution g2, g?, g¢ where a, b,c +> U({1,...,q —1})
e DDH: a distribution g2, g®, g where a, b <> U({1,...,q — 1})

DDH is difficult in G is no PPT adversary A can exhibit non-negligible
advantage:

Adv(A) = ’Pr [A RAND, 1} _Pr [A oA, 1”
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The complete DDH game

The DDH game is played between a challenger C and an adversary A.

C chooses (G, g)

C chooses x,y < U(Z4) and b

RAND case (b=0): z <> U(Zq); DDH case (b=1) : z=xy
C sends (g,8%,8”,8%) to A

A returns a bit b’

If b=1b', A wins

DDH is difficult in G is for any PPT adversary A:

Adv(A) =

Pr[.A wins] — ;’ = negl(n) .
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DH security (ctd.)

DLP > CDH > DDH

o |If we can solve DLP we can solve CDH
o |f we can solve CDH we can solve DDH

Not an equivalence: there are “gap” groups where CDH is hard and DDH
is easy.
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ElGamal PKE

We are now in a group G where DDH is hard.

We are constructing a public-key encryption scheme based on this.
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ElGamal PKE

Public parameters (G, g, g) (g is the order of G, g a generator)

KeyGen:
e Sample x <= U(Zq)
o sk,pk=x,g":=h
Encme G

e Sample y < U(Z,)
e Return c1, ¢ == (g”, W - m)

Dec ¢ = (c1, @)

e Return m = (1)

Correctness.

ala™)=Wmg™ =g¥mg™ =m .
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ElGamal security

Lemma
If DDH is difficult in G, then ElGamal is IND-CPA.

The proof is a reduction: given A that breaks IND-CPA security of
ElGamal, construct A’ that breaks DDH.

We say that the IND-CPA security of EIGamal reduces to DDH.
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Proof

Consider an adversary A playing the IND-CPA game for ElGamal:

e Initialization: the challenger chooses a key (x, g*), a bit b, and
sends g* to A

e A chooses mg, m; and sends them to C

e C computes ¢, ¢ = Enc(pk, mp) and sends (¢, o) to A

e A computes b, wins if b/ = b

We show that if DDH is difficult:

AdvPA(A) = | Pr[A Win] — 1/2| < negl(n)

For this we use A to define an adversary B against DDH.

Internally, B will run A. When running inside B, A still believes that they
are in the IND-CPA game: all messages sent and received match those of
the game.
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Proof (ctd.)

Here is our adversary B playing the DDH game:

(G, q,g) is fixed

C chooses x,y <= U(Zq) and b

RAND case (b=0): z <> U(Zq); DDH case (b=1) : z=xy
C sends (g*,g”,g%) to B

B sends g,g* to A

A chooses mg, m; and sends them to 5

B chooses b/, computes (g”, g% - my) and sends it to A
A returns a bit b” to B

o If b' = b" (A wins in their game), B returns 1, else 0
See next slide.
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Proof (ctd.)

Here is all the activity between C, B and A. Notice that all that A ever
sees is an IND-CPA game where B acts as the challenger.

C B A
b+ U({0,1})
If b=0, z > U(Zq)
else z = xy
g8 g 8.8
Choose b’ Choose mg, my
Mo, My

a,c = (g”,8% my)
C1,C2

Compute b”

If b/ = b" (A wins)
output 1 else 0
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Proof (ctd.)

We study B.

In the RAND case: (b =0)

e z is uniform and independent, so ¢c; = gZmy, is uniform and
independent
e A cannot distinguish the ciphertexts
e B3 returns 1 with probability 1/2
o Pr[B wins|RAND] = 1/2
In the DDH case: (b=1)

e z = xy and the ciphertext is valid
e B returns 1 iff A wins

Pr [B wins| DDH] = Pr[A wins]

In total:
. 1
| Pr[B wins] — 5\ =
1 : 1 , 1, 1 _ 1
|§ Pr[B WInS|DDH]+§ Pr[B Wlns\RAND]—§| = 5| Pr[A Wlns]—§| )
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Proof (end)

For any adversary A against IND-CPA, there exists an adversary B
against DDH that:

e Takes the same time to run as A
e Satisfies:

‘Pr[B wins| — ;‘ =

1 . 1
5 Pr[.A wins] — 2'

If DDH is difficult, for any PPT adversary B against DDH,
|Pr [B wins] — 3| = negl(n)

4
For any PPT adversary A against EIGamal, |Pr[A wins] — | = negl(n)

If DDH is difficult, then ElGamal is secure in the group G.
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Discussion

One of the advantages of EIGamal compared to RSA:

The group is fixed. Multiple users can work in the same group (vs. need
to regenerate N = PQ).

In crypto standards (e.g. NIST SP 800-186 for elliptic curves), there is a
specification of groups that you can use.

One of the disadvantages of ElGamal & RSA:

It's not post-quantum :(
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