Introduction to Cryptography Part III: DLP, DH and ElGamal

André Schrottenloher

Inria Rennes Team CAPSULE

1 The DL Problem

- **3** Diffie-Hellman Key Exchange
- **4** The ElGamal PKE

The DL Problem

The DL Problem

Discrete Logarithm

Let G, \cdot be a multiplicative group of order q and g a known element. Given g^a (where $a \leftarrow U(\mathbb{Z}_q)$), find a.

- $a \rightarrow g^a$ is always easy
- $g^a \rightarrow a$ is sometimes hard, but not always

Example: take N, k prime with N, a subgroup of $(\mathbb{Z}_N, +)$ generated by k.

- We can compute multiplicative inverses
- ka mod $N \rightarrow a \mod N$ is easy

Safe primes

Remark: G in the DL problem can always be replaced by a cyclic group (generated by g).

Historical choice for DL groups:

- Work in the multiplicative group \mathbb{Z}_p^* , where p is prime
- Choose a subgroup of \mathbb{Z}_p^* with large prime order
- Take g a generator of this group
- A safe prime p is such that (p-1)/2 is prime.
- This guarantees the existence of a large subgroup, in which we work.

⁽p-1)/2 is called a Sophie Germain prime.

Interlude: Pohlig-Hellman reduction

Reduce the DLP in a group of order $n = p_1 p_2$ to the DLP in groups of order p_1 and p_2 (if p_1, p_2 are coprime).

Algorithm:

- Let *h* = *g*^{*a*}
- Compute DL of h^{p2} = (g^{p2})^a in the subgroup generated by g^{p2} (of order p1)
- \implies get $a \mod p_1$
 - Compute DL of $h^{p_1} = (g^{p_1})^a$ in the subgroup generated by g^{p_1} (of order p_2)
- \implies get $a \mod p_2$
 - Compute a using the CRT (since p_1, p_2 are coprime).
 - \implies we want to work in a group of large prime order.

Interlude: Pohlig-Hellman for a prime power

If $e \ge 2$, reduce the DLP in a group of order $n = p^e$ to e instances of DLP in a group of size p.

Algorithm (for $h = g^a$): 1. Initialize $x_0 = 0$ 2. Compute $\gamma = g^{p^{e^{-1}}}$ which has order p3. For all $k = 0, \dots, e - 1$ do: • Compute the DL d_k of $h_k = (g^{-x_k}h)^{p^{e^{-1-k}}}$ in the group $\langle \gamma \rangle$ generated by γ • Set $x_{k+1} = x_k + p^k d_k$

Then x_e is the DL. Indeed:

$$\gamma^{d_{e-1}} = (g^{-x_{e-1}}h) \implies h = g^{x_{e-1}}\gamma^{d_e} = g^{x_{e-1}+p^{e-1}d_{e-1}}$$

The non-trivial part is to prove that $h_k \in \langle \gamma \rangle$, which we have to prove by induction over k.

Interlude: DL in \mathbb{Z}_p^* vs. elliptic curves

- The DL in Z^{*}_p can be solved in subexponential time using index calculus / sieving methods (similarly to factoring).
- p has to be large (2048-4096 bits) to ensure security.

Nowadays, we don't use DL in \mathbb{Z}_p^* anymore, but groups of **points on elliptic curves.**

An elliptic curve (on \mathbb{Z}_p) is the set of points (x, y) defined by an equation of the form $y^2 = x^3 + ax + b$ (+ a 'point at infinity''). It can be equipped with an additive group law.

- When the elliptic curve is well-chosen, the DL is hard.
- The best known algorithms are **exponential** (this lecture + TD).

Solving the DLP

Solving the DLP

- The DLP can be solved in any group of order q in time $\mathcal{O}(\sqrt{q})$.
- This is the best complexity known that works for any group.

An algorithm

Suppose $h = g^a$ and g are given.

- 1. Compute h^i for many random integers i
- 2. Compute g^j for many random integers j
- 3. Look for a pair (i, j) such that $i \neq j$ and $h^i = g^j$

From such a pair: $g^{ai} = g^j \implies ai = j \mod q \implies a = ji^{-1} \mod q$ (problem solved).

Next: compute the complexity of this approach.

Interlude: birthday paradox

What is the probability of two students (among 20) having the same birthday?

 $1-(1)(1-1/365)(1-2/365)\cdots(1-19/365)\simeq 0.41$.

Lemma

Let y_1, \ldots, y_ℓ be random (uniform) samples in a set of size N. A collision is a pair (y_i, y_j) such that $y_i = y_j$ and $i \neq j$. There exists a collision:

- With prob. at most $\ell^2/2N$
- With prob. at least $\frac{\ell(\ell-1)}{4N}$ if $\ell \leq \sqrt{2N}$

Intuition:

- Each pair has probability 1/N of forming a collision
- There are $\ell^2/2$ pairs \implies this gives the upper bound
- But they are not independent

The constant is not that important. It can be made more precise.

Solving the DLP

Interlude: birthday paradox (ctd.)

Write *NoColl_i* the event "no collision among y_1, \ldots, y_i ."

 $\Pr[\textit{NoColl}_{\ell}] = \Pr[\textit{NoColl}_{1}] \cdot \Pr[\textit{NoColl}_{2} | \textit{NoColl}_{1}] \cdots \Pr[\textit{NoColl}_{\ell} | \textit{NoColl}_{\ell-1}] .$

Also: $\Pr[NoColl_1] = 1$, and $\Pr[NoColl_{i+1}|NoColl_i] = 1 - i/N$ (the new element must be different from the *i* previous ones)

$$\implies$$
 Pr[NoColl_l] = $\prod_{i=1}^{\ell-1} (1 - i/N)$

Now we do some bounding: $\forall i, 1 - i/N \le e^{-i/N}$:

$$\Pr[NoColl_{\ell}] \le e^{-\sum_{i=1}^{\ell-1} i/N} = e^{-\ell(\ell-1)/2N}$$

And for x < 1, $1 - x/2 \ge e^{-x}$:

$$\Pr[Coll] = 1 - \Pr[NoColl_{\ell}] \ge 1 - e^{-\ell(\ell-1)/2N} \ge \frac{\ell(\ell-1)}{4N}$$

Conclusion

Powers of *h* and *g* give us random elements of the group (heuristically). A collision occurs after computing $\mathcal{O}(\sqrt{q})$ powers. This algorithm has:

- Time $\widetilde{\mathcal{O}}(\sqrt{q})$ (optimal, up to small factors)
- Memory $\mathcal{O}(\sqrt{q})$ (not optimal)

We can do better: $\mathcal{O}(\sqrt{q})$ time and $\mathcal{O}(1)$ memory (see TD).

Diffie-Hellman Key Exchange

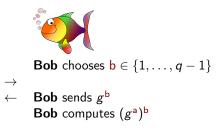
The Diffie-Hellman key-exchange

Public parameters: a cyclic group G and a generator g of order q.

- 1. Alice chooses $a \in \{1, \dots, q-1\}$
- 2. Alice sends g^a
- 3.
- 4. Alice computes $(g^{b})^{a}$

 $k = (g^b)^a = (g^a)^b$ is the shared secret key.

Do not use this in practice.



DH security

- The adversary observes only g^a, g^b where $a, b \leftarrow U(\{1, \dots, q-1\})$.
- Recovering g^{ab} = the computational DH problem (CDH)

Many security proofs are based instead on the **decisional** DH problem (DDH).

Distinguish the two cases:

- RAND: a distribution g^a, g^b, g^c where $a, b, c \leftarrow U(\{1, \dots, q-1\})$
- DDH: a distribution g^a, g^b, g^{ab} where $a, b \leftarrow U(\{1, \dots, q-1\})$

DDH is difficult in G is no PPT adversary ${\mathcal A}$ can exhibit non-negligible advantage:

$$\operatorname{Adv}(\mathcal{A}) = \left| \mathsf{Pr}\left[\mathcal{A} \xrightarrow{RAND} 1 \right] - \mathsf{Pr}\left[\mathcal{A} \xrightarrow{DDH} 1 \right] \right| \ .$$

The complete DDH game

The DDH game is played between a **challenger** C and an **adversary** A.

- C chooses (G, g)
- C chooses $x, y \leftarrow U(\mathbb{Z}_q)$ and b
- RAND case (b = 0): $z \leftarrow U(\mathbb{Z}_q)$; DDH case (b = 1) : z = xy
- C sends (g, g^x, g^y, g^z) to A
- \mathcal{A} returns a bit b'
- If b = b', \mathcal{A} wins

DDH is difficult in G is for any PPT adversary \mathcal{A} :

$$\operatorname{Adv}(\mathcal{A}) = \left| \operatorname{Pr}[\mathcal{A} \text{ wins}] - \frac{1}{2} \right| = \operatorname{negl}(n) .$$

DH security (ctd.)

DLP > CDH > DDH

- If we can solve DLP we can solve CDH
- If we can solve CDH we can solve DDH

Not an equivalence: there are "gap" groups where CDH is hard and DDH is easy.

The ElGamal PKE

ElGamal PKE

We are now in a group G where DDH is hard.

We are constructing a public-key encryption scheme based on this.

ElGamal PKE

Public parameters (G, q, g) (q is the order of G, g a generator)

KeyGen:

- Sample $x \leftrightarrow U(\mathbb{Z}_q)$
- $\mathsf{sk}, \mathsf{pk} = x, g^x := h$

 $\mathsf{Enc}\ \mathsf{m}\in\mathsf{G}$

- Sample $\mathbf{y} \leftarrow U(\mathbb{Z}_q)$
- Return $c_1, c_2 := (g^y, h^y \cdot m)$

Dec $c = (c_1, c_2)$

• Return $m = c_2(c_1^{-x})$

Correctness.

$$c_2(c_1^{-x}) = h^y m g^{-xy} = g^{xy} m g^{-xy} = m$$
.

ElGamal security

Lemma

If DDH is difficult in G, then ElGamal is IND-CPA.

The proof is a **reduction**: given A that breaks IND-CPA security of ElGamal, construct A' that breaks DDH.

We say that the IND-CPA security of ElGamal reduces to DDH.

Proof

Consider an adversary ${\cal A}$ playing the IND-CPA game for ElGamal:

- Initialization: the challenger chooses a key (x, g^x), a bit b, and sends g^x to A
- \mathcal{A} chooses m_0, m_1 and sends them to \mathcal{C}
- C computes $c_1, c_2 = \mathsf{Enc}(\mathsf{pk}, m_b)$ and sends (c_1, c_2) to \mathcal{A}
- \mathcal{A} computes b', wins if b' = b

We show that if DDH is difficult:

$$\operatorname{Adv}^{CPA}(\mathcal{A}) = |\Pr[\mathcal{A} \operatorname{Win}] - 1/2| \le \operatorname{negl}(n)$$

For this we use \mathcal{A} to define an adversary \mathcal{B} against DDH.

Internally, \mathcal{B} will run \mathcal{A} . When running inside \mathcal{B} , \mathcal{A} still believes that they are in the IND-CPA game: all messages sent and received match those of the game.

Proof (ctd.)

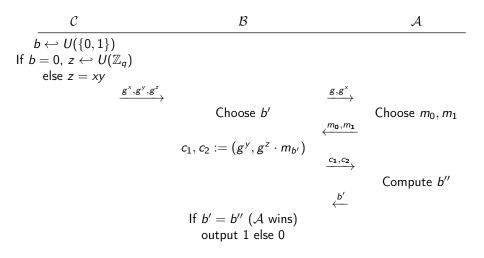
Here is our adversary ${\mathcal B}$ playing the DDH game:

- (G, q, g) is fixed
- \mathcal{C} chooses $x, y \leftarrow U(\mathbb{Z}_q)$ and b
- RAND case (b = 0): $z \leftarrow U(\mathbb{Z}_q)$; DDH case (b = 1): z = xy
- \mathcal{C} sends (g^x, g^y, g^z) to \mathcal{B}
- \mathcal{B} sends g, g^{x} to \mathcal{A}
- \mathcal{A} chooses m_0, m_1 and sends them to \mathcal{B}
- $\mathcal B$ chooses b', computes $(g^y, g^z \cdot m_{b'})$ and sends it to $\mathcal A$
- \mathcal{A} returns a bit b'' to \mathcal{B}
- If b' = b'' (A wins in their game), B returns 1, else 0

See next slide.

Proof (ctd.)

Here is all the activity between C, B and A. Notice that **all that** A **ever** sees is an IND-CPA game where B acts as the challenger.



Proof (ctd.)

We study \mathcal{B} .

In the RAND case: (b = 0)

- z is uniform and independent, so $c_2 = g^z m_b$ is uniform and independent
- ${\mathcal A}$ cannot distinguish the ciphertexts
- ${\cal B}$ returns 1 with probability 1/2
- $\Pr[\mathcal{B} \text{ wins} | RAND] = 1/2$

In the DDH case: (b = 1)

- z = xy and the ciphertext is valid
- ${\mathcal B}$ returns 1 iff ${\mathcal A}$ wins

$$\mathsf{Pr}\left[\mathcal{B} \; \mathsf{wins} | \mathcal{DDH}
ight] = \mathsf{Pr}\left[\mathcal{A} \; \mathsf{wins}
ight]$$

In total:

$$|\Pr\left[\mathcal{B} \text{ wins}\right] - \frac{1}{2}| = \frac{1}{2}\Pr\left[\mathcal{B} \text{ wins}|DDH\right] + \frac{1}{2}\Pr\left[\mathcal{B} \text{ wins}|RAND\right] - \frac{1}{2}| = \frac{1}{2}|\Pr\left[\mathcal{A} \text{ wins}\right] - \frac{1}{2}|$$

Proof (end)

For any adversary ${\cal A}$ against IND-CPA, there exists an adversary ${\cal B}$ against DDH that:

- Takes the same time to run as ${\cal A}$
- Satisfies:

$$\left| \Pr\left[\mathcal{B} \text{ wins}\right] - \frac{1}{2} \right| = \frac{1}{2} \left| \Pr\left[\mathcal{A} \text{ wins}\right] - \frac{1}{2} \right|$$

If DDH is difficult, for any PPT adversary \mathcal{B} against DDH, $\left|\Pr\left[\mathcal{B} \text{ wins}\right] - \frac{1}{2}\right| = \operatorname{negl}(n)$

∜

For any PPT adversary A against ElGamal, $|\Pr[A \text{ wins}] - \frac{1}{2}| = \operatorname{negl}(n)$

If DDH is difficult, then ElGamal is secure in the group G.

One of the advantages of ElGamal compared to RSA:

The group is fixed. Multiple users can work in the same group (vs. need to regenerate N = PQ).

In crypto standards (e.g. NIST SP 800-186 for elliptic curves), there is a specification of groups that you can use.

One of the disadvantages of ElGamal & RSA:

It's not post-quantum :(