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The DL Problem

The DL Problem

Discrete Logarithm
Let G, · be a multiplicative group of order q and g a known element.
Given g a (where a←↩ U(Zq)), find a.

• a→ g a is always easy
• g a → a is sometimes hard, but not always

Example: take N, k prime with N, a subgroup of (ZN ,+) generated by k .
• We can compute multiplicative inverses
• ka mod N → a mod N is easy
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The DL Problem

Safe primes

Remark: G in the DL problem can always be replaced by a cyclic group
(generated by g).

Historical choice for DL groups:
• Work in the multiplicative group Z∗

p, where p is prime
• Choose a subgroup of Z∗

p with large prime order
• Take g a generator of this group

• A safe prime p is such that (p − 1)/2 is prime.
• This guarantees the existence of a large subgroup, in which we work.

(p − 1)/2 is called a Sophie Germain prime.
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The DL Problem

Interlude: Pohlig-Hellman reduction

Reduce the DLP in a group of order n = p1p2 to the DLP in groups of
order p1 and p2 (if p1, p2 are coprime).

Algorithm:
• Let h = g a

• Compute DL of hp2 = (gp2)a in the subgroup generated by gp2 (of
order p1)

=⇒ get a mod p1
• Compute DL of hp1 = (gp1)a in the subgroup generated by gp1 (of

order p2)
=⇒ get a mod p2
• Compute a using the CRT (since p1, p2 are coprime).

=⇒ we want to work in a group of large prime order.
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The DL Problem

Interlude: Pohlig-Hellman for a prime power

If e ≥ 2, reduce the DLP in a group of order n = pe to e instances of
DLP in a group of size p.

Algorithm (for h = g a):
1. Initialize x0 = 0
2. Compute γ = gpe−1

which has order p
3. For all k = 0, . . . , e − 1 do:
• Compute the DL dk of hk = (g−xkh)p

e−1−k

in the group ⟨γ⟩
generated by γ
• Set xk+1 = xk + pkdk

Then xe is the DL. Indeed:

γde−1 = (g−xe−1h) =⇒ h = g xe−1γde = g xe−1+pe−1de−1 .

The non-trivial part is to prove that hk ∈ ⟨γ⟩, which we have to prove by
induction over k .
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The DL Problem

Interlude: DL in Z∗p vs. elliptic curves

• The DL in Z∗
p can be solved in subexponential time using index

calculus / sieving methods (similarly to factoring).
• p has to be large (2048-4096 bits) to ensure security.

Nowadays, we don’t use DL in Z∗
p anymore, but groups of points on

elliptic curves.

An elliptic curve (on Zp) is the set of points (x , y) defined by an
equation of the form y2 = x3 + ax + b (+ a ‘point at infinity”). It can be
equipped with an additive group law.

• When the elliptic curve is well-chosen, the DL is hard.
• The best known algorithms are exponential (this lecture + TD).
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Solving the DLP

Solving the DLP

• The DLP can be solved in any group of order q in time O
(√

q
)
.

• This is the best complexity known that works for any group.

An algorithm
Suppose h = g a and g are given.

1. Compute hi for many random integers i
2. Compute g j for many random integers j
3. Look for a pair (i , j) such that i ̸= j and hi = g j

From such a pair: g ai = g j =⇒ ai = j mod q =⇒ a = ji−1 mod q
(problem solved).

Next: compute the complexity of this approach.
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Solving the DLP

Interlude: birthday paradox

What is the probability of two students (among 20) having the same
birthday?

1− (1)(1− 1/365)(1− 2/365) · · · (1− 19/365) ≃ 0.41 .

Lemma
Let y1, . . . , yℓ be random (uniform) samples in a set of size N. A collision
is a pair (yi , yj) such that yi = yj and i ̸= j . There exists a collision:
• With prob. at most ℓ2/2N
• With prob. at least ℓ(ℓ−1)

4N if ℓ ≤
√

2N

Intuition:
• Each pair has probability 1/N of forming a collision
• There are ℓ2/2 pairs =⇒ this gives the upper bound
• But they are not independent

The constant is not that important. It can be made more precise.
11/28



Solving the DLP

Interlude: birthday paradox (ctd.)

Write NoColli the event “no collision among y1, . . . , yi .”

Pr [NoCollℓ] = Pr [NoColl1]·Pr [NoColl2|NoColl1] · · ·Pr [NoCollℓ|NoCollℓ−1] .

Also: Pr [NoColl1] = 1, and Pr [NoColli+1|NoColli ] = 1− i/N (the new
element must be different from the i previous ones)

=⇒ Pr [NoCollℓ] =
ℓ−1∏
i=1

(1− i/N)

Now we do some bounding: ∀i , 1− i/N ≤ e−i/N :

Pr [NoCollℓ] ≤ e−
∑ℓ−1

i=1 i/N = e−ℓ(ℓ−1)/2N .

And for x < 1, 1− x/2 ≥ e−x :

Pr [Coll ] = 1− Pr [NoCollℓ] ≥ 1− e−ℓ(ℓ−1)/2N ≥ ℓ(ℓ− 1)
4N

.
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Solving the DLP

Conclusion

Powers of h and g give us random elements of the group (heuristically).
A collision occurs after computing O

(√
q
)

powers. This algorithm has:

• Time Õ
(√

q
)

(optimal, up to small factors)
• Memory O

(√
q
)

(not optimal)

We can do better: O
(√

q
)

time and O(1) memory (see TD).
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Diffie-Hellman Key Exchange

The Diffie-Hellman key-exchange

Public parameters: a cyclic group G and a generator g of order q.

1. Alice chooses a ∈ {1, . . . , q − 1} Bob chooses b ∈ {1, . . . , q − 1}
2. Alice sends ga →
3. ← Bob sends gb

4. Alice computes (gb)a Bob computes (ga)b

k = (gb)a = (ga)b is the shared secret key.

Do not use this in practice.
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Diffie-Hellman Key Exchange

DH security

• The adversary observes only g a, gb where a, b ←↩ U({1, . . . , q − 1}).
• Recovering g ab = the computational DH problem (CDH)

Many security proofs are based instead on the decisional DH problem
(DDH).

Distinguish the two cases:
• RAND: a distribution g a, gb, g c where a, b, c ←↩ U({1, . . . , q − 1})
• DDH: a distribution g a, gb, g ab where a, b ←↩ U({1, . . . , q − 1})

DDH is difficult in G is no PPT adversary A can exhibit non-negligible
advantage:

Adv(A) =
∣∣∣Pr [A RAND−−−−→ 1

]
− Pr

[
A DDH−−−→ 1

]∣∣∣ .
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Diffie-Hellman Key Exchange

The complete DDH game

The DDH game is played between a challenger C and an adversary A.
• C chooses (G, g)
• C chooses x , y ←↩ U(Zq) and b
• RAND case (b = 0): z ←↩ U(Zq); DDH case (b = 1) : z = xy
• C sends (g , g x , g y , g z) to A
• A returns a bit b′

• If b = b′, A wins

DDH is difficult in G is for any PPT adversary A:

Adv(A) =
∣∣∣∣Pr [A wins]− 1

2

∣∣∣∣ = negl(n) .
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Diffie-Hellman Key Exchange

DH security (ctd.)

DLP > CDH > DDH

• If we can solve DLP we can solve CDH
• If we can solve CDH we can solve DDH

Not an equivalence: there are “gap” groups where CDH is hard and DDH
is easy.
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The ElGamal PKE

ElGamal PKE

We are now in a group G where DDH is hard.

We are constructing a public-key encryption scheme based on this.
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The ElGamal PKE

ElGamal PKE

Public parameters (G, q, g) (q is the order of G, g a generator)

KeyGen:
• Sample x ←↩ U(Zq)
• sk, pk = x , g x := h

Enc m ∈ G
• Sample y ←↩ U(Zq)
• Return c1, c2 := (g y , hy ·m)

Dec c = (c1, c2)

• Return m = c2(c1
−x)

Correctness.

c2(c1
−x) = hymg−xy = g xymg−xy = m .
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The ElGamal PKE

ElGamal security

Lemma
If DDH is difficult in G, then ElGamal is IND-CPA.

The proof is a reduction: given A that breaks IND-CPA security of
ElGamal, construct A′ that breaks DDH.

We say that the IND-CPA security of ElGamal reduces to DDH.
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The ElGamal PKE

Proof

Consider an adversary A playing the IND-CPA game for ElGamal:
• Initialization: the challenger chooses a key (x , g x), a bit b, and

sends g x to A
• A chooses m0,m1 and sends them to C
• C computes c1, c2 = Enc(pk,mb) and sends (c1, c2) to A
• A computes b′, wins if b′ = b

We show that if DDH is difficult:

AdvCPA(A) = |Pr [A Win]− 1/2| ≤ negl(n)

For this we use A to define an adversary B against DDH.

Internally, B will run A. When running inside B, A still believes that they
are in the IND-CPA game: all messages sent and received match those of
the game.
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The ElGamal PKE

Proof (ctd.)

Here is our adversary B playing the DDH game:
• (G, q, g) is fixed
• C chooses x , y ←↩ U(Zq) and b
• RAND case (b = 0): z ←↩ U(Zq); DDH case (b = 1) : z = xy
• C sends (g x , g y , g z) to B

• B sends g , g x to A
• A chooses m0,m1 and sends them to B
• B chooses b′, computes (g y , g z ·mb′) and sends it to A
• A returns a bit b′′ to B

• If b′ = b′′ (A wins in their game), B returns 1, else 0
See next slide.
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The ElGamal PKE

Proof (ctd.)
Here is all the activity between C, B and A. Notice that all that A ever
sees is an IND-CPA game where B acts as the challenger.

C B A

b ←↩ U({0, 1})
If b = 0, z ←↩ U(Zq)

else z = xy
g x ,g y ,g z

−−−−−→ g ,g x

−−−→
Choose b′ Choose m0,m1

m0,m1←−−−−
c1, c2 := (g y , g z ·mb′)

c1,c2−−−→
Compute b′′

b′

←−
If b′ = b′′ (A wins)

output 1 else 0
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The ElGamal PKE

Proof (ctd.)
We study B.

In the RAND case: (b = 0)
• z is uniform and independent, so c2 = g zmb is uniform and

independent
• A cannot distinguish the ciphertexts
• B returns 1 with probability 1/2
• Pr [B wins|RAND] = 1/2

In the DDH case: (b = 1)
• z = xy and the ciphertext is valid
• B returns 1 iff A wins

Pr [B wins|DDH] = Pr [A wins]

In total:

|Pr [B wins]− 1
2
| =

|1
2
Pr [B wins|DDH]+

1
2
Pr [B wins|RAND]− 1

2
| = 1

2
|Pr [A wins]− 1

2
| .
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The ElGamal PKE

Proof (end)

For any adversary A against IND-CPA, there exists an adversary B
against DDH that:
• Takes the same time to run as A
• Satisfies: ∣∣∣∣Pr [B wins]− 1

2

∣∣∣∣ = 1
2

∣∣∣∣Pr [A wins]− 1
2

∣∣∣∣
If DDH is difficult, for any PPT adversary B against DDH,∣∣Pr [B wins]− 1

2

∣∣ = negl(n)

⇓

For any PPT adversary A against ElGamal,
∣∣Pr [A wins]− 1

2

∣∣ = negl(n)

If DDH is difficult, then ElGamal is secure in the group G.
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The ElGamal PKE

Discussion

One of the advantages of ElGamal compared to RSA:

The group is fixed. Multiple users can work in the same group (vs. need
to regenerate N = PQ).

In crypto standards (e.g. NIST SP 800-186 for elliptic curves), there is a
specification of groups that you can use.

One of the disadvantages of ElGamal & RSA:

It’s not post-quantum :(
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