
Organization

• 6 lectures (André Schrottenloher)
• 7 TDs (Clémence Chevignard)
• 2 grades TBD

Course material (organization, lecture notes, slides, TDs. . .) on:
https://andreschrottenloher.github.io/pages/teaching.html

E-mail:
andre(dot)schrottenloher(at)inria(dot)fr

1/33

https://andreschrottenloher.github.io/pages/teaching.html

Content of this course

• Perfect security, rigorous definition of security
• Public-key cryptography: RSA =⇒ this lecture
• Discrete logarithm problem, Diffie-Hellman key-exchange, ElGamal

cryptosystem
• (LWE) (if time)
• Digital signatures
• Symmetric cryptography

2/33

In the previous lecture

• Definition of a (perfectly secure) symmetric cryptosystem (but
how do you transmit the key?)

• The one-time pad, Shannon’s theorem
• Definitions of an efficient adversary, and indistinguishability notions

3/33

Introduction to Cryptography
Part II: Public-Key Encryption – RSA

André Schrottenloher

Inria Rennes
Team CAPSULE

1 Public-Key Encryption

2 Prime Numbers and Factoring

3 Textbook RSA

4 Padded RSA

5/33

So I forgot...

. . . to say what we want to achieve for the exchanged messages:
• Confidentiality: the transmitted information remains secret
• Authenticity: guarantees that the transmitted information has

indeed be sent by Alice (resp. Bob)
• Integrity: guarantees that the transmitted information has not been

tampered with
• Non-repudiation: guarantees that parties cannot later deny being

the author of a message

So far we have seen encryption, which only guarantees confidentiality
(the others will come later in the course).

6/33

Public-Key Encryption

Public-Key Encryption

7/33

Public-Key Encryption

Asymmetric encryption

A PKE scheme is a triple of PPT algorithms KeyGen,Enc,Dec:KeyGen : 1n 7→ sk, pk
Enc : m, pk 7→ c
Dec : c, sk 7→ m

(1)

such that ∀m, Dec(sk, (Enc(pk,m) ,m)) = m.

sk, pk = KeyGen(1n)
pk

c = Enc(m, pk)
c

m = Dec(c, sk)

Color code: not secret, secret, no color = public parameter.
8/33

Public-Key Encryption

Security of PKE

• “The adversary cannot learn anything on the ciphertext from the
plaintext” = perfect security (One-time Pad).

• By restricting to PPT adversaries we get the notion of semantic
security. However it’s hard to prove / use in practice.

• Instead we use ciphertext indistinguishability, which is equivalent
and easier to use.

9/33

Public-Key Encryption

IND-CPA

The IND-CPA security game for PKE is defined as follows.
• Initialization : C chooses b ←↩ U(0, 1) and keys
(pk, sk)← KeyGen(1n), sends pk to A

• Find stage : A chooses messages m0,m1 and sends to C, who
returns c∗ = Enc(pk,mb) (the challenge ciphertext

• Guess stage : A computes b′ and wins the game if b = b′.

Choose b ←↩ U(0, 1)
Choose (pk, sk)← KeyGen(1n)

pk
m0,m1

c∗ = Enc(pk,mb)

Return b′

10/33

Public-Key Encryption

IND-CPA (ctd.)

The advantage of A is:

AdvCPA(A) =
∣∣∣∣Pr [A wins]− 1

2

∣∣∣∣ .
If the advantage of any PPT adversary is negligible, then the cipher is
said to be IND-CPA secure.

Note that:
• The adversary may encrypt at will during the game (since they have

the public key) =⇒ “chosen-plaintext”
• The encryption must be probabilistic, otherwise there is a trivial

attack

11/33

Public-Key Encryption

IND-CPA (ctd.)

The advantage of A is:

AdvCPA(A) =
∣∣∣∣Pr [A wins]− 1

2

∣∣∣∣ .
If the advantage of any PPT adversary is negligible, then the cipher is
said to be IND-CPA secure.

Note that:
• The adversary may encrypt at will during the game (since they have

the public key) =⇒ “chosen-plaintext”
• The encryption must be probabilistic, otherwise there is a trivial

attack

11/33

Public-Key Encryption

IND-CCA

• IND-CCA is a stronger notion: IND-CPA + decryption queries.
• Decryption queries should not allow the adversary to win trivially

(e.g., decrypt c∗)

The IND-CCA security game is defined like the IND-CPA game, during
which A can additionally perform decryption queries. They are
answered as follows:
• A chooses a ciphertext c and sends c to C
• If c 6= c∗, C returns Dec(sk, c)
• Otherwise C returns ⊥

12/33

Public-Key Encryption

IND-CCA

• IND-CCA is a stronger notion: IND-CPA + decryption queries.
• Decryption queries should not allow the adversary to win trivially

(e.g., decrypt c∗)

The IND-CCA security game is defined like the IND-CPA game, during
which A can additionally perform decryption queries. They are
answered as follows:
• A chooses a ciphertext c and sends c to C
• If c 6= c∗, C returns Dec(sk, c)
• Otherwise C returns ⊥

12/33

Public-Key Encryption

IND-CCA (ctd.)

There are two variants:
• IND-CCA1 (“non-adaptive”): queries only in the “find stage”

(before c∗ is known)
• IND-CCA2 (“adaptive”): queries at any point

The advantage of the adversary is defined by:

AdvCCA(A) =
∣∣∣∣Pr [A Wins]− 1

2

∣∣∣∣ .
If the advantage of any PPT adversary is negligible, then the cipher is
said to be IND-CCA(1,2) secure.

13/33

Prime Numbers and Factoring

Prime Numbers and Factoring

14/33

Prime Numbers and Factoring

Prime numbers and how to find them

Prime number theorem
There are O(2n/n) prime numbers with n bits.

=⇒ if you select a random n-bit integer, it’s prime with probability
O(1/n).

Fermat’s little theorem
If p is prime, for any a < p, ap−1 = 1 (mod p).

=⇒ Fermat primality test: pick a random a and check if this condition
holds. For most non-primes, the condition breaks with constant
probability.

• However there are bad cases, so we use instead the Miller-Rabin
primality test: if p is non-prime, the condition breaks with
probability 3/4.

• Repeat ad lib until you’re satisfied with the probability of success

15/33

Prime Numbers and Factoring

Factoring

• Multiplying integers (P,Q → PQ) is easy
• Factoring (PQ → P,Q) is hard

• The best algorithm for factoring has subexponential complexity
(GNFS):

exp
[(

(64/9)1/3 + o(1)
)
(log n)1/3(log log n)2/3

]
' 2O(n

1/3)

16/33

Prime Numbers and Factoring

Some arithmetic

We work in the group ZN , and Z∗N is the (multiplicative) subgroup of
invertible elements (integers < N prime with N).

Euler’s totient function
φ(N) = |Z∗N |

Properties:

φ(p) = p − 1 for p prime
φ(p1 · · · p`) = φ(p1) · · ·φ(p`) for p1, . . . , p` coprime

φ(pe) = pe−1(p − 1) for p prime
φ(pq) = (p − 1)(q − 1) for p, q distinct primes

17/33

Prime Numbers and Factoring

Some arithmetic (ctd.)

Lagrange’s theorem
If H is a subgroup of the group G , then the order of H divides the order
of G .

Corollary
In any group G, · of order n, for any a ∈ G, an = 1.

Consequence: Fermat’s little theorem
For any N, for any a prime with N, aφ(N) = 1 (mod N).

18/33

Prime Numbers and Factoring

Some arithmetic (ctd.)

Chinese remainder theorem (CRT)
Let N = PQ where P,Q are coprime:{

ZN ' ZP × ZQ

Z∗N ' Z∗P × Z∗Q

The function f (x) = (x mod P, x mod Q) is such an isomorphism.

If P,Q are known, the inverse of f can be computed in polynomial time.
• Use Euclide’s algorithm to find x , y such that xP + yQ = 1.
• Given (a, b) ∈ ZP × ZQ , compute: c = yQa+ xPb (mod N)
• Check that c (mod P) = yQa (mod P) = a and c (mod Q) = xPb

(mod Q) = b.

19/33

Prime Numbers and Factoring

Some arithmetic (ctd.)

Chinese remainder theorem (CRT)
Let N = PQ where P,Q are coprime:{

ZN ' ZP × ZQ

Z∗N ' Z∗P × Z∗Q

The function f (x) = (x mod P, x mod Q) is such an isomorphism.

If P,Q are known, the inverse of f can be computed in polynomial time.
• Use Euclide’s algorithm to find x , y such that xP + yQ = 1.
• Given (a, b) ∈ ZP × ZQ , compute: c = yQa+ xPb (mod N)
• Check that c (mod P) = yQa (mod P) = a and c (mod Q) = xPb

(mod Q) = b.

19/33

Textbook RSA

Textbook RSA

20/33

Textbook RSA

Constructing a PKE

The Holy Grail of public-key encryption is a trapdoor one-way function.
• One-way: a function f that is easy to compute (x → f (x)), but

difficult to invert
• Trapdoor: the knowledge of some additional information should

make this problem easy again

RSA is the most well-known cryptosystem, and still one of the most used.

21/33

Textbook RSA

Constructing a PKE

The Holy Grail of public-key encryption is a trapdoor one-way function.
• One-way: a function f that is easy to compute (x → f (x)), but

difficult to invert
• Trapdoor: the knowledge of some additional information should

make this problem easy again
RSA is the most well-known cryptosystem, and still one of the most used.

21/33

Textbook RSA

Textbook RSA

We work in Z∗N .

KeyGen:
• Choose P,Q prime, N = PQ
• Choose e prime with φ(N), compute d s.t. ed = 1 (mod φ(N)).
• sk = d , pk = (N, e)

Enc (m ∈ Z∗N):
• c = me

Dec:
• m = cd.

Correctness:
(me)d = med = m (mod N) .

22/33

Textbook RSA

Wait... is this efficient?

KeyGen: in time poly(n), we can generate probable primes (probability of
failure = 2−n) with Miller-Rabin.

Enc and Dec perform modular exponentiation.

Let e = e0 + 2e1 + . . .+ 2n−1en−1:

me = me0+2e1+...+2n−1en−1 = me0+2(e1+2(e2+...)...)

• Compute men−1

• Square: m2en−1

• Multiply: men−2+2en−1

• Square: m2en−2+22en−1

• . . . =⇒ O(n) modular operations

DO NOT USE this algorithm in actual software.

23/33

Textbook RSA

RSA problem

The RSA problem is:
• Given xe (mod N), with public parameters (e,N), find x

The RSA assumption is that the problem is difficult.

Lemma
Factorisation is harder than RSA: if there is a PPT algorithm solving the
factorisation problem, there is a PPT algorithm solving the RSA problem.

Knowing P and Q, we can compute φ(N), d , and compute (xe)d = x .

The converse is not known to be true!

24/33

Textbook RSA

The trapdoor function in RSA

Under the RSA assumption:

f (x) = xe (mod N)

is a trapdoor one-way function with d as the trapdoor.

25/33

Padded RSA

Padded RSA

26/33

Padded RSA

Padded RSA

Is “textbook RSA” IND-CPA?

(No)

27/33

Padded RSA

Padded RSA

Is “textbook RSA” IND-CPA?
(No)

27/33

Padded RSA

Padded RSA

• Textbook RSA is not IND-CPA

(because deterministic)
• To make it IND-CPA, we can add a random padding to the message.

Padded RSA PKE

KeyGen:
• Choose P,Q prime, N = PQ
• Choose e prime with φ(N), compute d s.t. ed = 1
(mod φ(N)).
• sk = d, pk = (N, e)

Enc m ∈ {0, 1}`

• Choose r←↩ U({0, 1}log2 N−`)
• Compute m′ ∈ ZN which has binary representation (r‖m)
• Return c = (m′)e.

Dec:
• Return the ` LSBs of m = cd mod N.

28/33

Padded RSA

Padded RSA

• Textbook RSA is not IND-CPA (because deterministic)
• To make it IND-CPA, we can add a random padding to the message.

Padded RSA PKE

KeyGen:
• Choose P,Q prime, N = PQ
• Choose e prime with φ(N), compute d s.t. ed = 1
(mod φ(N)).
• sk = d, pk = (N, e)

Enc m ∈ {0, 1}`

• Choose r←↩ U({0, 1}log2 N−`)
• Compute m′ ∈ ZN which has binary representation (r‖m)
• Return c = (m′)e.

Dec:
• Return the ` LSBs of m = cd mod N.

28/33

Padded RSA

Padded RSA

• Textbook RSA is not IND-CPA (because deterministic)
• To make it IND-CPA, we can add a random padding to the message.

Padded RSA PKE

KeyGen:
• Choose P,Q prime, N = PQ
• Choose e prime with φ(N), compute d s.t. ed = 1
(mod φ(N)).
• sk = d, pk = (N, e)

Enc m ∈ {0, 1}`

• Choose r←↩ U({0, 1}log2 N−`)
• Compute m′ ∈ ZN which has binary representation (r‖m)
• Return c = (m′)e.

Dec:
• Return the ` LSBs of m = cd mod N.

28/33

Padded RSA

Question

Is Padded-RSA IND-CCA secure?

(Assume that Dec returns the entire Cd mod N).

• Choose a random k
• Compute c ′ = kec mod N
• Send c ′ to the decryption oracle, get m′ = (c ′)d mod N
• We have: (r‖m) = m′ · k−1 mod N

29/33

Padded RSA

Question

Is Padded-RSA IND-CCA secure?

(Assume that Dec returns the entire Cd mod N).
• Choose a random k
• Compute c ′ = kec mod N
• Send c ′ to the decryption oracle, get m′ = (c ′)d mod N
• We have: (r‖m) = m′ · k−1 mod N

29/33

Padded RSA

Theorem

Theorem
If you have access to a black-box that, on input c , outputs whether
m = (cd mod N) < N/2, then you can construct a decryption algorithm
in O(n) calls to the black-box.

Proof idea:
• Query with c : learn if m ∈ [0;N/2[
• Query with 2−ec : learn if m ∈ [0;N/4[or . . . assume that

m ∈ [N/4;N/2[
• Query with 2−2ec : learn if 4m mod N = 4m − N belongs to

[0;N/2[
• . . . (each time we manage to reduce the range)

This is from the MSB. We can do the same with the LSB.

30/33

Padded RSA

Theorem

Theorem
If you have access to a black-box that, on input c , outputs whether
m = (cd mod N) < N/2, then you can construct a decryption algorithm
in O(n) calls to the black-box.

Proof idea:
• Query with c : learn if m ∈ [0;N/2[
• Query with 2−ec : learn if m ∈ [0;N/4[or . . . assume that
m ∈ [N/4;N/2[

• Query with 2−2ec : learn if 4m mod N = 4m − N belongs to
[0;N/2[

• . . . (each time we manage to reduce the range)
This is from the MSB. We can do the same with the LSB.

30/33

Padded RSA

Consequence

1.
Padded RSA is CPA-secure (under RSA assumption) =⇒ we can
transform a CPA distinguisher into an attacker for the RSA assumption.

2.
Padded RSA is CCA-insecure.

31/33

Padded RSA

Consequence

1.
Padded RSA is CPA-secure (under RSA assumption) =⇒ we can
transform a CPA distinguisher into an attacker for the RSA assumption.

2.
Padded RSA is CCA-insecure.

31/33

Padded RSA

Some more remarks / caveats

• N should be at least 2048 bits
• e with small Hamming weight makes the encryption more efficient
• BUT e should not be “too small”
• In padded-RSA, use ` = O(logN).

RFC standard RSAES-PKCS1-V1_5 uses “at least 8 octets” of
randomness.

32/33

Padded RSA

Recap

• RSA relies on Fermat’s little theorem and (xe)d = xed , where e is a
public exponent and d a private one

• The security of RSA is not known to be equivalent to factoring
(that’s just the only way we attack the scheme in general)

• It relies on the RSA assumption, which is that the function x 7→ xe

(mod N) is a one-way trapdoor function
• Do NOT use “textbook” RSA, do NOT use the square-multiply

algorithm for exponentiation

33/33

	Public-Key Encryption
	Prime Numbers and Factoring
	Textbook RSA
	Padded RSA

