Organization

e 6 lectures (André Schrottenloher)
e 7 TDs (Clémence Chevignard)
e 2 grades TBD

Course material (organization, lecture notes, slides, TDs...) on:
https://andreschrottenloher.github.io/pages/teaching.html J

E-mail:
andre(dot)schrottenloher(at)inria(dot)fr J
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https://andreschrottenloher.github.io/pages/teaching.html

Content of this course

Perfect security, rigorous definition of security

Public-key cryptography: RSA — this lecture

Discrete logarithm problem, Diffie-Hellman key-exchange, ElGamal
cryptosystem

(LWE) (if time)

Digital signatures

Symmetric cryptography
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In the previous lecture

e Definition of a (perfectly secure) symmetric cryptosystem (but

how do you transmit the key?)
e The one-time pad, Shannon's theorem
e Definitions of an efficient adversary, and indistinguishability notions
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o Public-Key Encryption

© Prime Numbers and Factoring

© Textbook RSA

© Padded RSA



So | forgot...

...to say what we want to achieve for the exchanged messages:

e Confidentiality: the transmitted information remains secret

e Authenticity: guarantees that the transmitted information has
indeed be sent by Alice (resp. Bob)

e Integrity: guarantees that the transmitted information has not been
tampered with

e Non-repudiation: guarantees that parties cannot later deny being
the author of a message

So far we have seen encryption, which only guarantees confidentiality
(the others will come later in the course). J
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Public-Key Encryption

Asymmetric encryption

A PKE scheme is a triple of PPT algorithms KeyGen, Enc, Dec:

KeyGen: 1" +— sk, pk
Enc: m,pk C
Dec : c, sk — m

such that Vm, Dec(sk, (Enc(pk, m), m)) = m.

-2 R4

sk, pk = KeyGen(1") ok

¢ = Enc(m, pk)

m = Dec(c, sk)

Color code: not secret, secret, no color = public parameter.
8/33




Public-Key Encryption

Security of PKE

e "The adversary cannot learn anything on the ciphertext from the
plaintext” = perfect security (One-time Pad).

e By restricting to PPT adversaries we get the notion of semantic
security. However it's hard to prove / use in practice.

e Instead we use ciphertext indistinguishability, which is equivalent
and easier to use.
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Public-Key Encryption

IND-CPA

The IND-CPA security game for PKE is defined as follows.
e Initialization : C chooses b <= U(0,1) and keys
(pk, sk) <= KeyGen(1"), sends pk to A
e Find stage : A chooses messages mgp, m; and sends to C, who
returns ¢c* = Enc(pk, mp) (the challenge ciphertext
e Guess stage : A computes b’ and wins the game if b= b'.

O <

Choose b+ U(0,1)

Choose (pk, sk) + KeyGen(1") ok

mo, my
c* = Enc(pk, mp)

Return b’
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Public-Key Encryption

IND-CPA (ctd.)

The advantage of A is:

AdvePA(A) =

Pr[A wins] — é‘ .

If the advantage of any PPT adversary is negligible, then the cipher is
said to be IND-CPA secure.
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Public-Key Encryption

IND-CPA (ctd.)

The advantage of A is:
Adv(A) = ‘Pr[.A wins| — é‘ .

If the advantage of any PPT adversary is negligible, then the cipher is
said to be IND-CPA secure.

Note that:

e The adversary may encrypt at will during the game (since they have
the public key) = “chosen-plaintext”

e The encryption must be probabilistic, otherwise there is a trivial
attack
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Public-Key Encryption

IND-CCA

e IND-CCA is a stronger notion: IND-CPA + decryption queries.
e Decryption queries should not allow the adversary to win trivially
(e.g., decrypt c*)
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Public-Key Encryption

IND-CCA

e IND-CCA is a stronger notion: IND-CPA + decryption queries.
e Decryption queries should not allow the adversary to win trivially
(e.g., decrypt c*)

The IND-CCA security game is defined like the IND-CPA game, during
which A can additionally perform decryption queries. They are
answered as follows:

e A chooses a ciphertext ¢ and sends ¢ to C

o If ¢ # c¢*, C returns Dec(sk, c)

e Otherwise C returns L
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Public-Key Encryption

IND-CCA (ctd.)

There are two variants:

e IND-CCAL1 (“non-adaptive”’): queries only in the “find stage”
(before c* is known)
e IND-CCA2 (“adaptive”): queries at any point

The advantage of the adversary is defined by:

AdvEA(A) =

Pr[A Wins] — ;’ .

If the advantage of any PPT adversary is negligible, then the cipher is
said to be IND-CCA(1,2) secure.
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Prime Numbers and Factoring

Prime numbers and how to find them

Prime number theorem
There are O(2"/n) prime numbers with n bits.

= if you select a random n-bit integer, it's prime with probability
O(1/n).

Fermat'’s little theorem
If pis prime, for any a < p, a?~! =1 (mod p).

— Fermat primality test: pick a random a and check if this condition
holds. For most non-primes, the condition breaks with constant
probability.

o However there are bad cases, so we use instead the Miller-Rabin
primality test: if p is non-prime, the condition breaks with
probability 3/4.

e Repeat ad lib until you're satisfied with the probability of success
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Prime Numbers and Factoring

Factoring

e Multiplying integers (P, Q — PQ) is easy
e Factoring (PQ — P, Q) is hard

e The best algorithm for factoring has subexponential complexity

(GNFS):

2@ {((64/9)1/3 + o(l)) (log n)*/3(log log n)2/3} ~ 29(n"?)
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Prime Numbers and Factoring

Some arithmetic

We work in the group Zy, and Zj, is the (multiplicative) subgroup of
invertible elements (integers < N prime with N).

Euler’s totient function

¢(N) = |Zy|

Properties:

= p*Y(p — 1) for p prime

)

d(p1---pe) = ¢(p1) - d(pe) for pa, ..., pe coprime
)
) p—1)(g — 1) for p, g distinct primes

I
—~
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Prime Numbers and Factoring

Some arithmetic (ctd.)

Lagrange’s theorem
If H is a subgroup of the group G, then the order of H divides the order
of G.

Corollary
In any group G, - of order n, for any a € G, a" = 1.

Consequence: Fermat’s little theorem
For any N, for any a prime with N, a?(™) =1 (mod N).
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Prime Numbers and Factoring

Some arithmetic (ctd.)

Chinese remainder theorem (CRT)
Let N = PQ where P, Q are coprime:

ZN’ZZPXZQ
Ly ~ T x T}

The function f(x) = (x mod P,x mod Q) is such an isomorphism.
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Prime Numbers and Factoring

Some arithmetic (ctd.)

Chinese remainder theorem (CRT)
Let N = PQ where P, Q are coprime:

ZN’ZZPXZQ
Ly ~ T x T}

The function f(x) = (x mod P,x mod Q) is such an isomorphism.

If P, Q are known, the inverse of f can be computed in polynomial time.
e Use Euclide’s algorithm to find x, y such that xP + yQ = 1.
e Given (a,b) € Zp X Zq, compute: ¢ = yQa+ xPb (mod N)
e Check that ¢ (mod P) = yQa (mod P) = a and ¢ (mod Q) = xPb
(mod Q) = b.
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Textbook RSA

Constructing a PKE

The Holy Grail of public-key encryption is a trapdoor one-way function.

e One-way: a function f that is easy to compute (x — f(x)), but

difficult to invert
e Trapdoor: the knowledge of some additional information should

make this problem easy again
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Textbook RSA

Constructing a PKE

The Holy Grail of public-key encryption is a trapdoor one-way function.

e One-way: a function f that is easy to compute (x — f(x)), but
difficult to invert

e Trapdoor: the knowledge of some additional information should
make this problem easy again

RSA is the most well-known cryptosystem, and still one of the most used.
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Textbook RSA

Textbook RSA

We work in Zj,.

KeyGen:

e Choose P, Q prime, N = PQ
e Choose e prime with ¢(N), compute d s.t. ed =1 (mod ¢(N)).
e sk=d,pk=(N,e)

Enc (m € Zy):

e c=m¢
Dec:

e m=cd
Correctness:

(m®) =m* =m (mod N) .
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Textbook RSA

Wait... is this efficient?

KeyGen: in time poly(n), we can generate probable primes (probability of
failure = 27") with Miller-Rabin.

Enc and Dec perform modular exponentiation.
Lete=ey+2e1+...+2" e, 1:

me = meo+2el+...+2"71en,1 — me°+2(e1+2(e2+.4.)...)

Compute m®n—1

Square: m?én—2

Multiply: men—2+2en—1

Square: m2en-2+2%en—a

. = O(n) modular operations

DO NOT USE this algorithm in actual software.
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Textbook RSA

RSA problem

The RSA problem is:
e Given x¢ (mod N), with public parameters (e, N), find x
The RSA assumption is that the problem is difficult.

Factorisation is harder than RSA: if there is a PPT algorithm solving the

Lemma
factorisation problem, there is a PPT algorithm solving the RSA problem.J

Knowing P and @, we can compute ¢(N), d, and compute (x¢)? = x.

The converse is not known to be truel! [
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Textbook RSA

The trapdoor function in RSA

Under the RSA assumption:

f(x) =x% (mod N)

is a trapdoor one-way function with d as the trapdoor.
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Is “textbook RSA” IND-CPA?



Is “textbook RSA” IND-CPA?
(No)



e Textbook RSA is not IND-CPA



Padded RSA

Padded RSA

e Textbook RSA is not IND-CPA (because deterministic)
e To make it IND-CPA, we can add a random padding to the message.
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Padded RSA

Padded RSA

e Textbook RSA is not IND-CPA (because deterministic)
e To make it IND-CPA, we can add a random padding to the message.

Padded RSA PKE

KeyGen:
e Choose P, Q prime, N = PQ
e Choose e prime with ¢(N), compute d st. ed = 1
(mod p(N)).

e sk =d,pk = (N,e)
Enc m € {0,1}*

e Choose r <> U({0, 1}loe2V=¢)

e Compute m’ € Zy which has binary representation (r||m)

e Return ¢ = (m’)®.

Dec:
e Return the ¢ LSBs of m = ¢4 mod N.
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Is Padded-RSA IND-CCA secure? )

(Assume that Dec returns the entire C° mod N).



Padded RSA

Question

Is Padded-RSA IND-CCA secure?

(Assume that Dec returns the entire C° mod N).

Choose a random k

Compute ¢’ = k°c mod N

Send ¢’ to the decryption oracle, get m" = (¢’)
We have: (r|[m)=m’-k=1 mod N

d

mod N
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Padded RSA

Theorem

Theorem

If you have access to a black-box that, on input ¢, outputs whether
m = (c? mod N) < N/2, then you can construct a decryption algorithm
in O(n) calls to the black-box.
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Padded RSA

Theorem

Theorem

If you have access to a black-box that, on input ¢, outputs whether
m = (c? mod N) < N/2, then you can construct a decryption algorithm
in O(n) calls to the black-box.

Proof idea:

e Query with ¢: learn if m € [0; N/2|
e Query with 27¢¢: learn if m € [0; N/4[ or ...assume that
me [N/4; N/2|
e Query with 272¢¢: learn if 4m mod N = 4m — N belongs to
[0: N/2[
e ... (each time we manage to reduce the range)
This is from the MSB. We can do the same with the LSB.
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Padded RSA

Consequence

1.
Padded RSA is CPA-secure (under RSA assumption) = we can
transform a CPA distinguisher into an attacker for the RSA assumption.
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Padded RSA

Consequence

1.
Padded RSA is CPA-secure (under RSA assumption) = we can
transform a CPA distinguisher into an attacker for the RSA assumption.

2.
Padded RSA is CCA-insecure. J
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Padded RSA

Some more remarks / caveats

N should be at least 2048 bits

e with small Hamming weight makes the encryption more efficient
BUT e should not be “too small”

In padded-RSA, use £ = O(log N).

RFC standard RSAES-PKCS1-V1 5 uses “at least 8 octets” of
randomness.
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Padded RSA

Recap

RSA relies on Fermat's little theorem and (x¢)? = x¢¢, where e is a
public exponent and d a private one

e The security of RSA is not known to be equivalent to factoring
(that's just the only way we attack the scheme in general)

It relies on the RSA assumption, which is that the function x — x¢
(mod N) is a one-way trapdoor function

e Do NOT use “textbook” RSA, do NOT use the square-multiply
algorithm for exponentiation
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