
Quantum Computing and Post-quantum
Cryptography

PART 2

André Schrottenloher

Inria Rennes
Team CAPSULE

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

Summary of Part 1

Quantum computing (QC) is an enhanced model of computation
. . . in which (only) some problems admit significant speedups

Discrete Logarithms and factoring are solved in polynomial time with a
large-scale QC.
=⇒ cannot be used as crypto “hard problems” anymore

Unfortunately, this is (almost) all the currently deployed public-key
crypto

Large-scale QCs do not yet exist
The commercial impact of QC is overhyped, but the crypto threat is
real

2/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

Outline

4 Preliminaries
5 Lattice-based Cryptosystems
6 Other Families
7 The NIST Process

3/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

Preliminaries

4/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

Some history

In 1976, Diffie and Hellman invent the principle of public-key
cryptography and the DH key-exchange mechanism
In 1978, Rivest, Shamir and Adleman invent the RSA public-key
cryptosystem
(British military cryptographers already knew about that, but all of
their work remained classified until 1997)

But there’s more to the story . . .

Diffie, Hellman, “New directions in cryptography”, IEEE transactions on
information theory, 1976

Rivest, Shamir, Adleman, “A method for obtaining digital signatures and
public-key cryptosystems”, Commun. ACM 21.2, 1978

5/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

The McEliece cryptosystem (1978)

The scheme is based on error-correcting codes
The main drawback is the public key size: Megabits vs. Kilobits for
RSA
But it resists quantum attacks!

Post-quantum cryptography predates the theory of quantum computing!

McEliece, “A public-key system based on algebraic coding theory”, DSN Progress
Report 44, Jet Propulsion Lab, 1978

6/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

What we need

To secure the internet, we need:
Public-key encryption =⇒ more urgent
Digital signatures =⇒ less urgent
Secret-key (authenticated) encryption

=⇒ should be (mostly) OK

7/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

Public-key encryption (PKE)


KeyGen : 1λ 7→ sk, pk
Encrypt : m, pk 7→ c
Decrypt : c, sk 7→ m

sk, pk = KeyGen(1λ) pk

c = Encrypt(m, pk)
c

m = Decrypt(c, sk)

Typical attacks:
key security: recover sk from pk
message security: recover m from c

8/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

Key encapsulation mechanism (KEM)
KeyGen : 1λ 7→ sk, pk
Encaps : pk 7→ c, k
Decaps : sk, c 7→ k

k ∈ K is to be used as a symmetric secret key.

sk, pk = KeyGen(1λ) pk

c, k = Encaps(pk)
c

k = Decaps(c, sk)

Typical attacks:
key security
session key security: recover k from c

9/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

Lattice-based Cryptosystems
(without the lattices)

10/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

Lattice-based crypto: summary

At the moment, three lattice-based schemes are standardized (or on
the way) by NIST: Kyber (ML-KEM), Dilithium (ML-DSA),
Falcon (FN-DSA)
Lattice-based schemes are solid and reach small parameter sizes
(PK, SK, ciphertext)
Compared to RSA, still doubling or quadrupling the PK size for
equivalent security
Also, implementing these schemes is harder than RSA, but the
runtime is typically faster

11/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

A bad cryptosystem (do not use it!)

Choose a public matrix A ∈ Z`×n
q at random

Choose s ∈ Zn
q at random: our private key

Let (A,As) be our public key

12/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

Still a bad cryptosystem (do not use it!)

KeyGen:
Private key: random s ∈ Zn

q

Public key: random matrix A, b := As
Encrypt m ∈ {0, 1}:

Pick a random vector r ∈ {0, 1}`

Return c1, c2 := rA, (m+ r · b)
Decrypt (c1, c2) ∈ Zn+1

q :
Return m = c2 − c1 · s

c2 − c1 · s = (m+ r · b)− (rA)s
= m+ (r · b)− r((As︸︷︷︸

=b

) = m

13/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

Why is this broken?

Let’s do a Chosen-plaintext attack and always encrypt 0. We observe
samples:

rA, (rA) · s (1)

for unknown r and s.
After enough samples we have R,Rs: invert R to find s.

Linear algebra is not enough for crypto. We need another ingredient.

14/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

Learning with errors (LWE)

Choose a public matrix A ∈ Z`×n
q at random

Choose s ∈ Zn
q at random and a “small” error e ∈ Z`q

Public key: A, b := (As+ e)
Search: find s. Decision: distinguish the output from uniform.

We have good reasons to believe that LWE is hard*.
* Quantum reduction from average-case LWE to worst-case lattice problems.

Regev, “On lattices, learning with errors, random linear codes, and cryptography”,
STOC 2005

15/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

LWE: encryption scheme

Define:
Compress: decodes an integer mod q into 0 if it’s closer to 0 or 1 if
it’s closer to q/2
Decompress: encodes 0 to 0 and 1 to q/2

KeyGen:
Private key: random s ∈ Zn

q

Public key: random matrix A, b := As+ e with e “small”

16/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

LWE: encryption scheme

Encrypt m ∈ {0, 1}:
Pick a random vector r ∈ {0, 1}`

Return c1, c2 := rA, (Decompress(m) + r · b)
Decrypt (c1, c2) ∈ Zn+1

q :
m = Compress(c2 − c1 · s)

Why this works:

c2 − c1 · s = (Decompress(m) + r · b)− (rA) · s
= Decompress(m) + r(As+ e)− rAs
= Decompress(m) + r · e︸︷︷︸

Small

The decryption may fail with some insignificant probability (e.g., 2−160 in Kyber
according to the designers)

17/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

Limits of “basic” LWE

The ciphertext is big: O (n) bits for only one bit encrypted
The public key is big (around O

(
n2
)
bits for n-bit security)

The computation time is big (around O
(
n2
)
for a matrix-vector

product)
More algebra fixes it: we replace matrices over Zq by polynomials.

18/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

Polynomial rings

Fix an integer n, and let: R = Z[X]/(X n + 1), i.e., polynomials where
“X n = −1”.

a = (a0, . . . , an−1)↔ a(X) = a0 + a1X + . . .+ an−1X
n−1

=⇒ after all operations (addition, product . . .) simply divide the
polynomials by X n + 1.

We can also define such polynomials mod q: Rq := Zq[X]/(X n + 1)

19/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

Ring-LWE

Let’s agree on a distribution of polynomials DR with small
coefficients

Public a ∈ Rq chosen u.a.r.
Secret s, e ∈ R chosen with DR

Given b = a · s+ e (mod q), find s (search) or distinguish from
random (decision)

With this:
We have n coefficients (vector a, b) instead of n2 for a problem of
size n!
We will be able to encrypt n bits instead of 1
We accelerate the encryption / decryption to O (n log n) operations

Kyber actually uses Module-LWE, which is another variant.
20/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

Ring-LWE as in Kyber
KeyGen:

Private key: s ∈ Rq, e ∈ Rq sampled using DR (i.e., small)
Public key: random a ∈ Rq, and b := a · s+ e

Encrypt m ∈ {0, 1}n (as an element of Rq)

r DR←−− Rq, e1
DR←−− Rq, e2

DR←−− Rq

c1 := a · r + e1
c2 := b · r + e2 + Decompress(m)

Return (c1, c2)
Decrypt (c1, c2)

m = Compress(c2 − s · c1)

c2 − s · c1 = b · r + e2 + Decompress(m)− s · (a · r + e1)
= s · a · r + e · r + e2 + Decompress(m)− s · a · r − s · e1
= e · r + e2 − s · e1︸ ︷︷ ︸

Small

+Decompress(m) .

21/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

Other Families

22/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

Summary

The post-quantum schemes are classified depending on (the objects
underlying) their hardness assumptions.

Lattices
SVP/SIS in random or structured lattices
Mature, upcoming standards

Error-correcting codes
Decoding random-looking codes
Larger public key sizes
Another KEM expected for standardization

23/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

Summary

Multivariate systems
Solving random-looking mulivariate equation systems
Give quite good signatures (you can expect one standard in the
coming years)

Others
Elliptic curve isogenies: small parameters & heavy computations,
not mature
Hash-based signatures: already standardized (SPHINCS+)
. . .

24/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

Code-based crypto

An error-correcting code is a way to encode information with
redundancy, ex.:

Charlie, Oscar, Delta, Echo

Formally we encode words of dimension k over F2 into codewords of
dimension n > k using a vector space defined by an k× n matrix.

Decoding problems:
Given a noisy codeword c = mG+ e (“small” e = t bit flips), find the
original word m
Given an error syndrome s = He, find the weight-t vector e

Decoding random codes is a hard problem

25/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

The McEliece scheme

Use a family of codes F that admit an efficient decoding algorithm, and
a procedure to generate such codes:{

S → F
s 7→ C(s)

KeyGen:
Alice picks a secret key s ∈ S
Reveal a parity-check matrix H of the code C(s)

Encrypt: e
Send c = He

Decrypt:
Recover e using a fast decoding algorithm

26/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

Bonus: Secret-key Cryptography

27/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

Secret-key cryptography

Secret-key cryptography seems mostly* secure against QCs.

More precisely:
in theory, we could have Shor-like speedups on classically secure
ciphers / hash functions
but these constructions are only theoretical

* Up to the cryptanalysis we tried so far

Yamakawa, Zhandry, “Verifiable Quantum Advantage without Structure”, FOCS
2022

28/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

Example

The AES-256 block cipher: encrypts 128-bit “blocks” using a 256-bit
secret key.

Security of an “ideal” block cipher:
classical: try all the keys (number of keys = 2256)
quantum: use Grover’s algorithm

=⇒ generic reduction in security, but a manageable one: 2256/2 = 2128

remains infeasible

Is that all we can do? Nobody knows. We must try to cryptanalyze.

Grover, “A fast quantum mechanical algorithm for database search”, STOC 1996
29/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

At the moment

Block cipher key-recovery:
generic: T → T 1/2

attacks have speedups between T 1 and T 1/2

on specific (but realistic) designs: between T 1/2 and T 2/5

Hash function collision:
generic: T → T 2/3

attacks have speedups between T 1 and T 1/2

Hash function preimage:
generic: T → T 1/2

attacks have speedups between T 1 and T 1/2

Only in the “store now, decrypt later” attacker model. (There are weirder models.)
30/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

The NIST Process: a Brief Summary

31/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

The NIST process

Follows a long tradition of competitions: AES, SHA-3, CAESAR...
It’s not only an American thing: NIST standards are de facto world
standards.

Bring together all researchers in the field
Many teams propose their designs
Let the best win!

https://csrc.nist.gov/projects/post-quantum-cryptography
32/40

https://csrc.nist.gov/projects/post-quantum-cryptography

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

The NIST process (ctd.)

No one is safe from cryptanalysis
Many (most?) of the candidates will be terribly broken
Including some of your favorite

33/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

The NIST process (ctd.)

82 submissions for KEMs and digital signatures: ' 64 in the first
round.

KEMs Lattice Codes Multivariate Other
Round 1 (2017) 21 17 2 5
Round 2 (2019) 9 7 0 0
Round 3 (2020) (finalists) 3 1 0 0
Round 3 (2020) (alternate) 2 2 0 1a

First standards (2022) 1b 0 0 0
Round 4 (2022) 0 3 0 0

a SIKE was broken
b CRYSTALS-Kyber based on Module-LWE

34/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

The NIST process (ctd.)

Signatures Lattices Codes Multivariate Other
Round 1 5 3 9 4
Round 2 3 0 4 2
Round 3 (2020) (finalists) 2 0 1a 0
Round 3 (2020) (alternate) 0 0 1b 2c

First standards (2022) 2d 0 0 1

a Rainbow was broken
b GeMSS was broken
c SPHINCS+ and Picnic (only SPHINCS+ survived)
d CRYSTALS-Dilithium and Falcon

There is no round 4 because no one else survived /

35/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

Thoughts on the NIST process

We learned a lot.*

Lots of research is still ongoing on the construction side: many
constructions are not mature
NIST has made rather conservative choices, which were justified
Even for the selected standards, lots of (applied) research remains on
secure implementations and integration

* Euphemism: many hopes were broken, many tears were shed.
36/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

Bonus track: the NIST PQC-DS process

In Sept. 2023 NIST launched an additional call for signatures.

Codes Isogenies Lattices MPCitH Multivar Symm. Other
Round 1 6 1 7 7 10 4 5
Round 2 2 1 1 5 4 1 0

With no less than 10 candidates broken during round 1.

37/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

Conclusion

38/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

On post-quantum crypto

Even mature solutions need work on implementations and hardware
Many alternatives, but many of them are not mature (i.e., should
not be used in production)

Don’t roll your own crypto, post-quantum edition:
many designs were broken in the NIST process
even those of teams with high expertise

Security =
∫ t

0
cryptanalysis effort dt

39/40

Preliminaries Lattice-based Cryptosystems Other Families Bonus: Secret-key Crypto The NIST Process

Recommendations

National agencies like ANSSI (France) or BSI (Germany) have made
recommendations for post-quantum crypto & transition timelines
Some of them may recommend schemes which are not NIST
standards, but were put to the test (e.g., FrodoKEM)
Most of them recommend hybrid encryption (pre + post-quantum)
in the near future

Thank you!

BSI, “Quantum-safe cryptography - fundamentals, current developments and
recommendations”,

“ANSSI Views on the Post-Quantum Cryptography transition” March 25, 2022

TNO, CWI, AIVD, “The PQC migration handbook”, 2023
40/40

	Preliminaries
	Lattice-based Cryptosystems
	Other Families
	Bonus: Secret-key Crypto
	The NIST Process

