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The quantum menace
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Outline

1 Quantum Computing Basics
What’s the secret?

2 Examples of Quantum Algorithms
What can we do?

3 Quantum Algorithms vs. Cryptography
Why is this a problem?
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Quantum Computing Basics
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Today: the Talk

See the comic by Scott Aaronson & Zach Weinersmith at:
https://www.smbc-comics.com/comic/the-talk-3
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Brief summary of quantum physics

I think I can safely say that nobody understands quantum
mechanics.

– Richard Feynman (1918-1988)

interpreting quantum physics is difficult
good for us: we’re not here to interpret, just to calculate
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Brief history of quantum computing

Quantum computing initiated in the 80s with the prospect of
simulating quantum mechanical systems

=⇒ e.g., to understand protein folding

Could it also be used to speed up classical computations?
=⇒ first significant quantum speedups appeared in the 90s

Deutsch, “Quantum theory, the Church-Turing principle and the universal
quantum computer”, Proc. R. Soc. Lond. 1985
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Qubits and superposition

A bit is a classical system which can
be in the state 0 or 1.

b = 0 or 1

A qubit is a quantum system with
two basis states |0〉 and |1〉.

|ψ〉 = α |0〉+ β |1〉

α and β are complex numbers such
that |α|2 + |β|2 = 1

Measurement
The state is a superposition
Measuring the qubit destroys the state and collapses the
superposition to |0〉 or |1〉
|0〉 is measured with probability |α|2

|1〉 is measured with probability |β|2
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Qubits and superposition (ctd.)

|cat〉 = 1√
2
| cat is alive〉+ 1√

2
| cat is dead〉

any two-state quantum system can be used as a qubit: even a cat
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Qubits and entanglement

Two bits can be in the state 00 or 01 or 10 or 11.
Two qubits form a quantum system with 4 basis states
|00〉 , |01〉 , |10〉 , |11〉

(4-dimensional vector space)

Consider the following state:

|ψ〉 = 1
2
|00〉+ 1

2
|01〉+ 1

2
|10〉+ 1

2
|11〉 = 1√

2
(|0〉+ |1〉) 1√

2
(|0〉+ |1〉)

Measure the first qubit: the second always collapses to 1√
2
(|0〉+ |1〉).

=⇒ the two qubits are disentangled
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Qubits and entanglement (ctd.)

Consider the following state:

|ψ〉 = 1√
2
|00〉+ 1√

2
|11〉

Measure the first qubit:
if the state collapses to |00〉: we measure 0 and the other becomes
0 with certainty
if the state collapses to |11〉: we measure 1 and the other is 1 with
certainty
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Qubits and entanglement (ctd.)

Experiments in the 1980s
confirmed the theory

Unfortunately for sci-fi, this
doesn’t allow faster-than-light
communication

It still works if you send the
second qubit to space: its state
will collapse on 0 or 1
depending on the
measurement result

Picture: École polytechnique / Jérémy Barande
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Qubits and entanglement (ctd.)

n qubits form a 2n-dimensional quantum system with 2n basis states:

|ψ〉 = α00..0 |00..0〉+ α01..0 |01..0〉+ . . .+ α11..1 |11..1〉 ∈ C2n

It is (and remains) normalized:
∑

i |αi |2 = 1.

An n-qubit quantum system is described by 2n complex amplitudes. If
the system evolves, we must recompute the 2n amplitudes.

this gets rapidly out of hand for classical computers
this is why quantum computers were proposed in the first place!
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Computations

We start from a set of qubits initialized to |00...0〉
We describe quantum algorithms as a sequence of basic, elementary
quantum gates
The quantum gates modify the current state of the algorithm
Eventually we will measure the state
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Starting from classical circuits

Any classical (reversible) circuit can be applied to our qubits
It will just apply in superposition to all possible states

Example: the Toffoli gate (universal for reversible logic)

a • a

b • b

c c ⊕ (a ∧ b)

=⇒ |a〉 • |a〉
|b〉 • |b〉

|c〉 |c ⊕ (a ∧ b)〉

|001〉 → |001〉 , |111〉 → |110〉
1√
2
|001〉+ 1√

2
|111〉 → 1√

2
|001〉+ 1√

2
|110〉

A quantum computation is a linear operator.
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Adding more quantum operations

The one-qubit Hadamard gate:

H |0〉 = 1√
2
|0〉+ 1√

2
|1〉 , H |1〉 = 1√

2
|0〉 − 1√

2
|1〉

The n-qubit Hadamard transform:

∀x ,H |x〉 = 1√
2n

∑
y

(−1)x·y |y〉

A quantum computation is a unitary operator (to preserve the
normalization).
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“Quantum parallelism”

Let f : {0, 1}n → {0, 1}m be your favorite function (e.g., SHA-3). There
exists a reversible circuit doing:

x , 0 7→ x , f (x)

i.e. a quantum algorithm:

|x〉 |0〉 7→ |x〉 |f (x)〉

Start from a uniform superposition over x : 1√
2n

∑
x∈{0,1}n

|x〉

 |0〉
apply f :

1√
2n

∑
x∈{0,1}n

|x〉 |f (x)〉
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“Quantum parallelism” (ctd.)

1√
2n

∑
x∈{0,1}n

|x〉 |f (x)〉

Let’s say we want a preimage of f , i.e., we fix y , and want x such that
f (x) = y . It’s here!

Are we simply computing “all the possibilities” in parallel?

NO
In superposition 6= in parallel

If we measure the state, we obtain a random x , f (x): this is useless
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Summary

The 3 principles of quantum computing:
1 superposition
2 entanglement
3 interference (next slides)

And the 4th one:
Quantum computation is not “doing everything is parallel”
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Examples of Quantum Algorithms
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Deutsch’s algorithm

Consider a one-bit boolean function: f : {0, 1} → {0, 1} implemented by
a phase oracle: |x〉 7→ (−1)f (x) |x〉.

Problem: determine if f is constant f (0) = f (1) or balanced
f (0) 6= f (1).

Classically we need 2 queries
Quantumly we need 1

|0〉 H f H

|0〉 H7−→ 1√
2
|0〉+ 1√

2
|1〉 f7−→ 1√

2
(−1)f (0) |0〉+ 1√

2
(−1)f (1) |1〉 .
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Deutsch’s algorithm (ctd.)

If f (0) = f (1):

H

[
± 1√

2
(|0〉+ |1〉)

]
= ±1

2

[
(|0〉+ |1〉) + (|0〉 − |1〉)︸ ︷︷ ︸

]
= ± |0〉

=⇒ constructive interference on 0 and destructive on 1
=⇒ measure 0

If f (0) 6= f (1):

H

[
± 1√

2
(|0〉 − |1〉)

]
= ±1

2

[
(|0〉 − |1〉)− (|0〉 − |1〉)︸ ︷︷ ︸

]
= ± |1〉

=⇒ constructive interference on 1 and destructive on 0
=⇒ measure 1
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Simon’s algorithm

Consider an n-bit (2-to-1) boolean function: f : {0, 1}n → {0, 1}n

with a circuit implementation x , 0 7→ x , f (x)

with a hidden boolean period: f (x ⊕ s) = f (x)

Problem: find s.

To answer this question, we need ' 2n/2 queries classically. Simon’s
algorithm does it in ' n queries!

Simon, “On the power of quantum computation”, FOCS 1994
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Simon’s algorithm (ctd.)

|0〉 H
f

H

|0〉

|0〉 |0〉 7→ 1√
2n

∑
x∈{0,1}n

|x〉 |0〉 7→ 1√
2n

∑
x∈{0,1}n

|x〉 |f (x)〉

At this point, measure f (x). We get a random value a. Let x0, x0 ⊕ s be
such that: f (x0) = f (x0 ⊕ s) = a.

1√
2
(|x0〉+ |x0 ⊕ s〉)

Now do another H. The states x0 and x0 ⊕ s will interfere:

1√
2n+1

(∑
y

(−1)y ·x0 |y〉+
∑
y

(−1)y ·(x0⊕s) |y〉

)

=
1√
2n+1

(∑
y

(−1)x0·y (1+ (−1)s·y ) |y〉

)
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Simon’s algorithm (ctd.)

In this final state:
If s · y = 0, the amplitude of y is 1√

2n−1

If s · y = 1, the amplitude of y is 0

=⇒ we can only measure y such that s · y = 0
=⇒ we obtain (random) linear equations on s
=⇒ we find s after repeating this ' n times

Shor’s algorithm has a similar structure.
⊕ is replaced by a modular +, H by a more general Quantum Fourier
Transform.
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Most common speedup: Grover’s algorithm

Given a large search space:
you can pick a guess
you can test if your guess is “good” with a quantum circuit
the probability to be good is p

=⇒ Grover search runs in time ' 1√
p

An important message
If the test is a black box, the quadratic speedup is optimal.

=⇒
√
· speedup of many NP-complete problems, crypto problems, etc.
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Quantum Algorithms vs. Cryptography
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Cryptography in a nutshell

Enable (cheap) secure communications over insecure channels.

Public-key
No shared secret
Key-exchange, signatures. . .
RSA, elliptic curve
cryptography . . .

Secret-key
Shared secret
Block ciphers, stream ciphers,
hash functions. . .
AES, SHA-3 . . .
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Computational hardness

Cryptography is based on conjectured hard computational problems
To decrypt the communication, has to factor large numbers,
or find a secret AES key, etc.
We estimate the time it would take to reach these goals, and ensure
that it’s infeasible
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Example: Diffie-Hellman key-exchange

Alice and Bob want to create a secret key k

They agree on a large prime p and a multiplicative generator g of Z∗p

1. Alice chooses a ∈ {1, . . . , p − 1} Bob chooses b ∈ {1, . . . , p − 1}
2. Alice sends ga mod p →
3. ← Bob sends gb mod p

4. Alice computes (gb)a mod p Bob computes (ga)b mod p

They define the secret key: k := (ga)b = gab = (gb)a mod p.
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Diffie-Hellman key-exchange (ctd.)

Meanwhile, observes ga, gb, and would like to find gab

=⇒ This is the Diffie-Hellman problem
could also find a directly from ga

=⇒ this is the discrete logarithm problem (DLP)

If the group is chosen well, this problem is hard . . .

. . . but not with a quantum computer.
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Diffie-Hellman vs. Shor’s algorithm (Shor wins)

The security of DH relies on the hardness of the DLP
Similarly the security of RSA relies on the hardness of factoring
Shor’s algorithm solves factoring and DLP in polynomial time, by
reducing both to Abelian hidden period

=⇒ breaks all public-key crypto used today

Shor, “Algorithms for quantum computation: discrete logarithms and factoring”,
FOCS 1994
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Post-quantum cryptography

Solution: do not use DLP and factoring-based crypto anymore!

Post-quantum crypto = crypto that remains secure in the presence of a
quantum adversary.
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“But the quantum computer does not exist yet!”

=⇒ The communication should remain secret for a time X (50 years?)
=⇒ Changing to post-quantum crypto will take time Y (10 years?)
=⇒ Building a QC will take time Z (30 years?)

“Mosca’s theorem”
If Y + X > Z , you have a problem

Y X

Z

Time
0 Y Z X+Y

Communications
become now

quantum-secure

Communications
between time 0 and Y

are decrypted
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“And what if it never works?”

Reversed pascalian bet:
there is a probability p that the “QC event” happens in our lifetimes
if this happens, all the technological infrastructure is at risk

Even if p → 0, the risk remains large.
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Reasoning about quantum adversaries

Crypto is already about attackers that do not exist
Many attacks are theoretical algorithms which show a weakness,
but which will never run in practice

Upgrading to PQC means just updating the notion of “algorithm”,
and the landscape of attacks
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Conclusion
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Where are we today?

Many competitors, some giants (IBM,
Google, Rigetti. . . ), lots of start-ups.

Alice & Bob (cat qubits)
Pasqal (neutral atoms)
Quandela (photonics)

Picture : IBM Research
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Where are we today? (ctd.)

Quantum computers are better than classical computers. . .
. . . at being quantum computers
. . . not on “useful” problems
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Where are we today? (ctd.)

Current numbers: ' 103 − 104 gates on ' 102 − 103 qubits.
...

What we need: ' 109 − 1010 gates on ' 103 − 104 qubits

But current qubits are “physical”: they have lots of errors
To run large-scale computations, we will need to correct the errors

=⇒ either technological breakthroughs, or more scaling
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Conclusion

Quantum computers are extremely good at solving some specific
problems (e.g., Shor)
. . . and very good at solving other (less specific) problems (e.g.,
Grover)
. . . and totally useless at solving many other problems!

Quantum computers today are still experimental
. . . but making steady progress towards the first use cases
Still a long way from breaking crypto

Cryptographers have been unlucky with Shor’s algorithm, but we’re going
to make our cryptography post-quantum. See part 2!
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