Quantum Computing and Post-quantum Cryptography PART 1

André Schrottenloher

Inria Rennes
Team CAPSULE

The quantum menace

The race to save the Internet from quantum hackers

Researchers have created a new and potentially dangerous encryption-breaking quantum algorithm
Some cryptography researchers see the claim as misleading, others see it as a potential warning sign

Quantum
computers will crack your encryption -maybe they already have

Research teams worldwide are racing to create a computer so powerful it will be able to read encrypted messages

Will quantum computers break RSA encryption in 2023?

Everybody knows that we should prepare ourselves for a "quantum future", but it was expected to come about in 10-20 years' time. Is a breakthrough possible this year?

Quantum computers can break
major encryption method, researchers claim
It has long been known that one day quantum computers will probably be able to crack the RSA encryption method we use to keep data safe, but a team of researchers is now claiming it is already possible, while others say the results require more scrutiny

> Have Chinese scientists really cracked RSA encryption with a quantum computer?

Outline

1 Quantum Computing Basics

- What's the secret?

2 Examples of Quantum Algorithms

- What can we do?

3 Quantum Algorithms vs. Cryptography

- Why is this a problem?

Quantum Computing Basics

Today: the Talk

See the comic by Scott Aaronson \& Zach Weinersmith at: https://www.smbc-comics.com/comic/the-talk-3

Brief summary of quantum physics

I think I can safely say that nobody understands quantum mechanics.

- Richard Feynman (1918-1988)
- interpreting quantum physics is difficult
- good for us: we're not here to interpret, just to calculate

Brief history of quantum computing

- Quantum computing initiated in the 80 s with the prospect of simulating quantum mechanical systems
\Longrightarrow e.g., to understand protein folding
- Could it also be used to speed up classical computations?
\Longrightarrow first significant quantum speedups appeared in the 90 s

[^0]
Qubits and superposition

A bit is a classical system which can be in the state 0 or 1 .

$$
b=0 \text { or } 1
$$

A qubit is a quantum system with two basis states $|0\rangle$ and $|1\rangle$.

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

α and β are complex numbers such that $|\alpha|^{2}+|\beta|^{2}=1$

Measurement

- The state is a superposition
- Measuring the qubit destroys the state and collapses the superposition to $|0\rangle$ or $|1\rangle$
- $|0\rangle$ is measured with probability $|\alpha|^{2}$
- $|1\rangle$ is measured with probability $|\beta|^{2}$

Qubits and superposition (ctd.)

- any two-state quantum system can be used as a qubit: even a cat

Qubits and entanglement

- Two bits can be in the state 00 or 01 or 10 or 11 .
- Two qubits form a quantum system with 4 basis states $|00\rangle,|01\rangle,|10\rangle,|11\rangle$
(4-dimensional vector space)

Consider the following state:

$$
|\psi\rangle=\frac{1}{2}|00\rangle+\frac{1}{2}|01\rangle+\frac{1}{2}|10\rangle+\frac{1}{2}|11\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)
$$

Measure the first qubit: the second always collapses to $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$.
\Longrightarrow the two qubits are disentangled

Qubits and entanglement (ctd.)

Consider the following state:

$$
|\psi\rangle=\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle
$$

Measure the first qubit:

- if the state collapses to $|00\rangle$: we measure 0 and the other becomes 0 with certainty
- if the state collapses to $|11\rangle$: we measure 1 and the other is 1 with certainty

Qubits and entanglement (ctd.)

- It still works if you send the second qubit to space: its state will collapse on 0 or 1 depending on the measurement result
- Experiments in the 1980 s confirmed the theory
- Unfortunately for sci-fi, this doesn't allow faster-than-light communication

Picture: École polytechnique / Jérémy Barande

Qubits and entanglement (ctd.)

n qubits form a 2^{n}-dimensional quantum system with 2^{n} basis states:

$$
|\psi\rangle=\alpha_{00 . .0}|00 . .0\rangle+\alpha_{01 . .0}|01 . .0\rangle+\ldots+\alpha_{11 . .1}|11 . .1\rangle \in \mathbb{C}^{2^{n}}
$$

It is (and remains) normalized: $\sum_{i}\left|\alpha_{i}\right|^{2}=1$.

An n-qubit quantum system is described by 2^{n} complex amplitudes. If the system evolves, we must recompute the 2^{n} amplitudes.

- this gets rapidly out of hand for classical computers
- this is why quantum computers were proposed in the first place!

Computations

- We start from a set of qubits initialized to $|00 \ldots 0\rangle$
- We describe quantum algorithms as a sequence of basic, elementary quantum gates
- The quantum gates modify the current state of the algorithm
- Eventually we will measure the state

Starting from classical circuits

- Any classical (reversible) circuit can be applied to our qubits
- It will just apply in superposition to all possible states

Example: the Toffoli gate (universal for reversible logic)

$|b\rangle$
$|c \oplus(a \wedge b)\rangle$

$$
|001\rangle \rightarrow|001\rangle,
$$

$$
|111\rangle \rightarrow|110\rangle
$$

$$
\frac{1}{\sqrt{2}}|001\rangle+\frac{1}{\sqrt{2}}|111\rangle \rightarrow \frac{1}{\sqrt{2}}|001\rangle+\frac{1}{\sqrt{2}}|110\rangle
$$

A quantum computation is a linear operator.

Adding more quantum operations

The one-qubit Hadamard gate:

$$
H|0\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle, \quad H|1\rangle=\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle
$$

The n-qubit Hadamard transform:

$$
\forall x, H|x\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{y}(-1)^{x \cdot y}|y\rangle
$$

A quantum computation is a unitary operator (to preserve the normalization).

"Quantum parallelism"

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ be your favorite function (e.g., SHA-3). There exists a reversible circuit doing:

$$
x, 0 \mapsto x, f(x)
$$

i.e. a quantum algorithm:

$$
|x\rangle|0\rangle \mapsto|x\rangle|f(x)\rangle
$$

Start from a uniform superposition over x :

$$
\left(\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle\right)|0\rangle
$$

apply f :

$$
\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle|f(x)\rangle
$$

"Quantum parallelism" (ctd.)

$$
\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle|f(x)\rangle
$$

Let's say we want a preimage of f, i.e., we fix y, and want x such that $f(x)=y$. It's here!

Are we simply computing "all the possibilities" in parallel?

NO

In superposition \neq in parallel
If we measure the state, we obtain a random $x, f(x)$: this is useless

Summary

The 3 principles of quantum computing:
(1) superposition
(2) entanglement
(3) interference (next slides)

And the 4th one:

- Quantum computation is not "doing everything is parallel"

Examples of Quantum Algorithms

Deutsch's algorithm

Consider a one-bit boolean function: $f:\{0,1\} \rightarrow\{0,1\}$ implemented by a phase oracle: $|x\rangle \mapsto(-1)^{f(x)}|x\rangle$.

Problem: determine if f is constant $f(0)=f(1)$ or balanced $f(0) \neq f(1)$.

- Classically we need 2 queries
- Quantumly we need 1

$$
\begin{gathered}
|0\rangle-H-\sqrt{f}-\frac{H}{\mapsto} \frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \stackrel{f}{\mapsto} \frac{1}{\sqrt{2}}(-1)^{f(0)}|0\rangle+\frac{1}{\sqrt{2}}(-1)^{f(1)}|1\rangle .
\end{gathered}
$$

Deutsch's algorithm (ctd.)

- If $f(0)=f(1)$:

$$
H\left[\pm \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\right]= \pm \frac{1}{2}[\underbrace{(|0\rangle+|1\rangle)+(|0\rangle-|1\rangle)}]= \pm|0\rangle
$$

\Longrightarrow constructive interference on 0 and destructive on 1
\Longrightarrow measure 0

- If $f(0) \neq f(1)$:

$$
H\left[\pm \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)\right]= \pm \frac{1}{2}[\underbrace{(|0\rangle-|1\rangle)-(|0\rangle-|1\rangle)}]= \pm|1\rangle
$$

\Longrightarrow constructive interference on 1 and destructive on 0
\Longrightarrow measure 1

Simon's algorithm

Consider an n-bit (2-to-1) boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

- with a circuit implementation $x, 0 \mapsto x, f(x)$
- with a hidden boolean period: $f(x \oplus s)=f(x)$

Problem: find s.

To answer this question, we need $\simeq 2^{n / 2}$ queries classically. Simon's algorithm does it in $\simeq n$ queries!

Simon, "On the power of quantum computation", FOCS 1994

Simon's algorithm (ctd.)

$$
|0\rangle|0\rangle \mapsto \frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle|0\rangle \mapsto \frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle|f(x)\rangle
$$

At this point, measure $f(x)$. We get a random value a. Let $x_{0}, x_{0} \oplus s$ be such that: $f\left(x_{0}\right)=f\left(x_{0} \oplus s\right)=a$.

$$
\frac{1}{\sqrt{2}}\left(\left|x_{0}\right\rangle+\left|x_{0} \oplus s\right\rangle\right)
$$

Now do another H. The states x_{0} and $x_{0} \oplus s$ will interfere:

$$
\begin{aligned}
\frac{1}{\sqrt{2^{n+1}}}\left(\sum_{y}(-1)^{y \cdot x_{0}}|y\rangle\right. & \left.+\sum_{y}(-1)^{y \cdot\left(x_{0} \oplus s\right)}|y\rangle\right) \\
& =\frac{1}{\sqrt{2^{n+1}}}\left(\sum_{y}(-1)^{x_{0} \cdot y}\left(1+(-1)^{s \cdot y}\right)|y\rangle\right)
\end{aligned}
$$

Simon's algorithm (ctd.)

In this final state:

- If $s \cdot y=0$, the amplitude of y is $\frac{1}{\sqrt{2^{n-1}}}$
- If $s \cdot y=1$, the amplitude of y is 0
\Longrightarrow we can only measure y such that $s \cdot y=0$
\Longrightarrow we obtain (random) linear equations on s
\Longrightarrow we find s after repeating this $\simeq \mathrm{n}$ times
Shor's algorithm has a similar structure.
\oplus is replaced by a modular,$+ H$ by a more general Quantum Fourier Transform.

Most common speedup: Grover's algorithm

Given a large search space:

- you can pick a guess
- you can test if your guess is "good" with a quantum circuit
- the probability to be good is p
\Longrightarrow Grover search runs in time $\simeq \frac{1}{\sqrt{p}}$

An important message

If the test is a black box, the quadratic speedup is optimal.
$\Longrightarrow \sqrt{ }$. speedup of many NP-complete problems, crypto problems, etc.

Quantum Algorithms vs. Cryptography

Cryptography in a nutshell

Enable (cheap) secure communications over insecure channels.

Public-key

- No shared secret
- Key-exchange, signatures. . .
- RSA, elliptic curve cryptography ...

Secret-key

- Shared secret
- Block ciphers, stream ciphers, hash functions...
- AES, SHA-3 ...

Computational hardness

- Cryptography is based on conjectured hard computational problems
- To decrypt the communication, 20 has to factor large numbers, or find a secret AES key, etc.
- We estimate the time it would take to reach these goals, and ensure that it's infeasible

Example: Diffie-Hellman key-exchange

- Alice and Bob want to create a secret key k
- They agree on a large prime p and a multiplicative generator g of \mathbb{Z}_{p}^{*}

1. Alice chooses $a \in\{1, \ldots, p-1\}$
2. Alice sends $g^{a} \bmod p$
3.
4. Alice computes $\left(g^{b}\right)^{\mathrm{a}} \bmod p$

Bob chooses $\mathrm{b} \in\{1, \ldots, p-1\}$

They define the secret key: $k:=\left(g^{\mathrm{a}}\right)^{\mathrm{b}}=g^{\mathrm{ab}}=\left(g^{\mathrm{b}}\right)^{\mathrm{a}} \bmod p$.

Diffie-Hellman key-exchange (ctd.)

- Meanwhile, 20 observes $g^{a}, g^{\text {b }}$, and would like to find $g^{\text {ab }}$
\Longrightarrow This is the Diffie-Hellman problem
- 2 could also find a directly from g^{a}
\Longrightarrow this is the discrete logarithm problem (DLP)

If the group is chosen well, this problem is hard ...
... but not with a quantum computer.

Diffie-Hellman vs. Shor's algorithm (Shor wins)

- The security of DH relies on the hardness of the DLP
- Similarly the security of RSA relies on the hardness of factoring
- Shor's algorithm solves factoring and DLP in polynomial time, by reducing both to Abelian hidden period
\Longrightarrow breaks all public-key crypto used today

[^1]
Post-quantum cryptography

- Solution: do not use DLP and factoring-based crypto anymore!

Post-quantum crypto $=$ crypto that remains secure in the presence of a quantum adversary.

"But the quantum computer does not exist yet!"

\Longrightarrow The communication should remain secret for a time X (50 years?)
\Longrightarrow Changing to post-quantum crypto will take time Y (10 years?)
\Longrightarrow Building a QC will take time Z (30 years?)

"Mosca's theorem"

If $Y+X>Z$, you have a problem
Time

"And what if it never works?"

Reversed pascalian bet:

- there is a probability p that the "QC event" happens in our lifetimes
- if this happens, all the technological infrastructure is at risk

Even if $p \rightarrow 0$, the risk remains large.

Reasoning about quantum adversaries

- Crypto is already about attackers that do not exist
- Many attacks are theoretical algorithms which show a weakness, but which will never run in practice

Can be done by us
Can be done by the NSA
Cannot be done

- Upgrading to PQC means just updating the notion of "algorithm", and the landscape of attacks

Conclusion

Where are we today?

Many competitors, some giants (IBM, Google, Rigetti. ..), lots of start-ups.
-

- Alice \& Bob (cat qubits)
- Pasqal (neutral atoms)
- Quandela (photonics)

Where are we today? (ctd.)

- Quantum computers are better than classical computers...
- ... at being quantum computers
- ...not on "useful" problems

Where are we today? (ctd.)

Current numbers: $\simeq 10^{3}-10^{4}$ gates on $\simeq 10^{2}-10^{3}$ qubits.

What we need: $\simeq 10^{9}-10^{10}$ gates on $\simeq 10^{3}-10^{4}$ qubits

- But current qubits are "physical": they have lots of errors
- To run large-scale computations, we will need to correct the errors either technological breakthroughs, or more scaling

CALL FOR EDITORS! PAPERS PERSPECTIVES

How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits

Craig Gidney ${ }^{1}$ and Martin Ekerå ${ }^{2,3}$
${ }^{1}$ Google Inc., Santa Barbara, California 93117, USA
${ }^{2}$ KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
${ }^{3}$ Swedish NCSA, Swedish Armed Forces, SE-107 85 Stockholm, Sweden

Conclusion

- Quantum computers are extremely good at solving some specific problems (e.g., Shor)
- ... and very good at solving other (less specific) problems (e.g., Grover)
- ... and totally useless at solving many other problems!
- Quantum computers today are still experimental
- ... but making steady progress towards the first use cases
- Still a long way from breaking crypto

Cryptographers have been unlucky with Shor's algorithm, but we're going to make our cryptography post-quantum. See part 2 !

[^0]: R
 Deutsch, "Quantum theory, the Church-Turing principle and the universal quantum computer", Proc. R. Soc. Lond. 1985

[^1]: Shor, "Algorithms for quantum computation: discrete logarithms and factoring", FOCS 1994

