Quantum Linear Key-recovery Attacks Using the QFT

André Schrottenloher

Inria

near Cryptanalysis	FFT-based Linear Attacks	Correlation State and Applications	Conclusion
00000	00000	000000000	0

Motivation

Lin

A block cipher $E_{\mathsf{K}} : \mathbb{F}_2^{\mathsf{n}} \to \mathbb{F}_2^{\mathsf{n}}$

Given access to the black-box E_{K}

- classical brute-force search of the key in $2^{|\mathsf{K}|}$ evaluations of E
- quantum brute-force (Grover's search) in $\simeq 2^{|\mathsf{K}|/2}$ evaluations of E

Valid **key-recovery attacks** must be below these bounds: **faster than brute force** (classically) or **faster than Grover** (quantumly).

FFT-based Linear Attacks

Correlation State and Applications

Conclusion

Motivation (ctd.)

- Linear cryptanalysis is a powerful cryptanalysis technique
- Advanced linear (key-recovery) attacks use the FFT
- Many quantum algorithms use the QFT (quantum Fourier transform)

Is there a way to use the QFT in quantum linear attacks?

FFT-based Linear Attacks

Correlation State and Applications

Conclusion

Previous & concurrent work

- [KLLN16]: quantum linear cryptanalysis using Grover's algorithm
- [H22]: using the QFT in some distinguishing attacks

Is there a way to use the QFT in quantum linear key-recovery attacks?

[□] Kaplan, Leurent, Leverrier, Naya-Plasencia, "Quantum differential and linear cryptanalysis", ToSC 2016

Hosoyamada, "Quantum speed-up for multidimensional (zero correlation) linear and integral distinguishers", ePrint 2022

FFT-based Linear Attacks

Correlation State and Applications

Conclusion O

Outline

1 Linear Cryptanalysis

3 Correlation State and Applications

Linear Cryptanalysis	FFT-based Linear Attacks	Correlation State and Applications	Conclusion
00000	00000	000000000	0

FFT-based Linear Attacks

Correlation State and Applications

Conclusion

Linear cryptanalysis

- Exploits a linear approximation of E: choice of (α, β) ∈ 𝔽ⁿ₂ such that α ⋅ x ⊕ β ⋅ E(x) is biased
- The quality of an approximation (α, β) is related to its **ELP**
- $\bullet~$ If ELP is large enough, we have a linear distinguisher

Linear	Cryptanalysis
0000	00

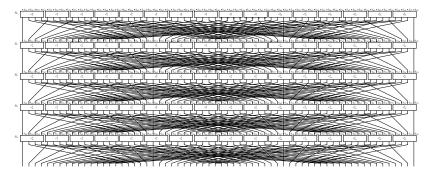
FFT-based Linear Attacks

Correlation State and Applications

Conclusion

Example

The Present block cipher:



Admits many one-bit approximations of the form:

bit *i* of input = bit *j* of output (\oplus 1) with probability $\frac{1}{2} + \varepsilon$

Linear Cryptanalysis	FFT-based Linear Attacks	Correlation State and Applications	Conclusion O
Example (c	td.)		

The **correlation** of approximation α, β :

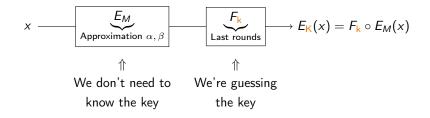
$$\operatorname{cor} := \frac{1}{2^{\mathsf{n}}} \sum_{x} (-1)^{\alpha \cdot x \oplus \beta \cdot E(x)}$$

- $\bullet\,$ gets closer to ± 1 if the approximation is good
- $\bullet \ \simeq 2^{-n/2}$ for a random permutation,
- ... but around $\sqrt{\rm ELP}\simeq 2^{-30}$ for 22 rounds of Present.

We can **distinguish** 22-round Present from a random permutation. The distinguisher: call the black-box and compute the correlation.

Linear Cryptanalysis 0000●0	FFT-based Linear Attacks	Correlation State and Applications	Conclusion O
Last-rounds	attack		

- Take a block cipher with approximation α,β (e.g. 22-round Present)
- Append a couple last rounds with unknown subkey ${\sf k}$
- \Rightarrow search exhaustively for k using the distinguisher



Matsui, "Linear cryptanalysis method for DES cipher", EUROCRYPT 1993

Linear Cryptanalysis ○○○○○●	T-based Linear Attacks	Correlation State and Appl

Conclusion

Last-rounds attack

Using the whole codebook, time about $\mathcal{O}\left(2^{n} \times 2^{|\mathbf{k}|}\right)$:

For each guess z of the subkey k, compute the experimental correlation:

$$\widehat{\operatorname{cor}}(z) := \frac{1}{2^{\mathsf{n}}} \sum_{x} (-1)^{\alpha \cdot x} (-1)^{\beta \cdot F_z^{-1}(E_{\mathsf{K}}(x))}$$

2 The good subkey k has (one of) the highest $|\widehat{cor}(z)|$

Statistics

- Right subkey: $|\widehat{\mathrm{cor}}(\mathsf{k})|$ is around $\sqrt{\mathrm{ELP}}$
- Wrong subkey: $|\widehat{cor}(z)|$ is around $2^{-n/2}$

Li	near Cryptanalysis	FFT-based Linear Attacks	Correlation State and Applications	Conclusion
0	00000	●0000	000000000	0

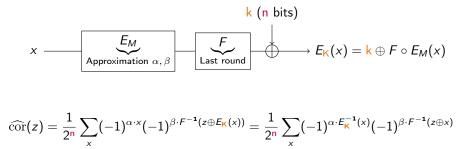
FFT-based Linear Attacks

FFT-based Linear Attacks

Correlation State and Applications

Conclusion

Improvement with the FFT



Principle: accelerate the computation of all $\widehat{cor}(z)$.

Collard, Standaert, Quisquater, "Improving the time complexity of Matsui's linear cryptanalysis." ICISC 2007

FFT-based Linear Attacks

Correlation State and Applications

Conclusion

Correlations via a discrete convolution

Introduce two functions f, g:

$$\begin{cases} f,g : \mathbb{F}_{2}^{n} \to \{-1,1\} \\ f(x) := (-1)^{\alpha \cdot E_{\mathsf{K}}^{-1}(x)} \\ g(x) := (-1)^{\beta \cdot F^{-1}(x)} \end{cases}$$

$$\widehat{\operatorname{cor}}(z) = \frac{1}{2^{\mathsf{n}}} \sum_{x} f(x) g(z \oplus x) := \frac{1}{2^{\mathsf{n}}} (f \star g) (z)$$

Compute all $\widehat{\operatorname{cor}}(z) \iff$ compute the discrete convolution of f and g

FFT-based Linear Attacks

Correlation State and Applications

Conclusion

The convolution theorem

The Walsh-Hadamard transform of *f*:

$$\widehat{f}(y) = \sum_{x} (-1)^{x \cdot y} f(x)$$

"Under a Walsh-Hadamard transform, the convolution corresponds to a pointwise product"

$$(f \star g) = \frac{1}{2^{\mathsf{n}}} \widehat{\widehat{f} \cdot \widehat{g}}$$

One computes \hat{f} via a Fast Walsh-Hadamard transform (FWHT) in time $\mathcal{O}(n2^n)$.

FFT-based Linear Attacks

Correlation State and Applications

Conclusion

Correlations via FWHT

- Evaluate $f(x) = (-1)^{\alpha \cdot E_{\mathsf{K}}^{-1}(x)} \to \mathcal{O}(2^{\mathsf{n}})$
- 2 Evaluate $g(x) = (-1)^{\beta \cdot F^{-1}(x)} \to \mathcal{O}(2^{n})$
- $O (n2^n) Compute \ \widehat{f}, \widehat{g} \ via \ FWHT \rightarrow \mathcal{O}(n2^n)$
- Do a pointwise product $\rightarrow \mathcal{O}\left(2^{\mathsf{n}}\right)$
- $\textcircled{O} \text{ Compute FWHT again} \rightarrow \mathcal{O}\left(n2^{n}\right)$
- Find the highest outputs \implies candidate keys

Improved time: $\mathcal{O}(n2^n)$ instead of $\mathcal{O}(2^n \times 2^{|\mathbf{k}|}) = \mathcal{O}(2^n \times 2^n)$.

Linear Cryptanalysis	FFT-based Linear Attacks	Correlation State and Applications	Conclusion
000000	00000	•000000000	0

Correlation State and Applications

FFT-based Linear Attacks

Correlation State and Applications

Conclusion

Quantum cryptanalysis basics

• The state of a quantum system is a superposition

$$\sum_{x\in \mathbb{F}_2^{\mathbf{n}}} lpha_x \, |x
angle \,\,$$
 with $\sum_x |lpha_x|^2 = 1$

• The amplitudes α_x are **not** immediately exploitable

Think of this as a probability distribution of outputs, where $|\alpha_x|^2$ is the probability to measure α_x .

FFT-based Linear Attacks

Correlation State and Applications

Conclusion

Quantum search

Quantum search

Given a **setup** algorithm that produces: $\sum_{x} \alpha_{x} |x\rangle | \text{flag}(x) \rangle$, we find x_{g} such that $\text{flag}(x_{g}) = 1$ in $\mathcal{O}\left(\frac{1}{|\alpha_{x_{g}}|}\right)$ calls.

Grover's exhaustive search:

- 1) take a key at random $ightarrow rac{1}{\sqrt{2^{|\mathsf{K}|}}} \sum_{z} |z
 angle$
- ${f O}$ check if it's good $ightarrow rac{1}{\sqrt{2^{|{\sf K}|}}}\sum_{z}|z
 angle |{\sf flag}
 angle$
- 3 use the quantum search black-box \rightarrow time $\simeq \sqrt{2^{|\mathsf{K}|}}$

FFT-based Linear Attacks

Correlation State and Applications

Conclusion

Quantum Fourier Transform

Computing a Walsh-Hadamard transform on the amplitudes is easy

If $f : \{0,1\}^n \rightarrow \{-1,1\}$ is a function:

$$\frac{1}{2^{n/2}} \sum_{x} f(x) |x\rangle \xrightarrow{H} \frac{1}{2^{n}} \sum_{y} \underbrace{\left(\sum_{x} (-1)^{x \cdot y} f(x)\right)}_{:=\widehat{f}(y)} |y\rangle$$

A typical thing to do: "sample at random"

$$|0\rangle \stackrel{H}{\mapsto} rac{1}{2^{\mathbf{n}/2}} \sum_{x} |x\rangle$$

FFT-based Linear Attacks

Correlation State and Applications

Conclusion

The hero we need: a "correlation state"

$$|\mathsf{Cor}
angle := \sum_z \widehat{\mathrm{cor}}(z) \ket{z}$$

FFT-based Linear Attacks

Correlation State and Applications

Conclusion

Computing $|Cor\rangle$

Recall the two functions f, g:

$$\begin{cases} f(x) := (-1)^{\alpha \cdot E_{\mathsf{K}}^{-1}(x)} \\ g(x) := (-1)^{\beta \cdot F^{-1}(x)} \end{cases}$$

and

$$\widehat{\operatorname{cor}}(z) = \frac{1}{2^{\mathsf{n}}} (f \star g)(z) = \frac{1}{2^{2\mathsf{n}}} \widehat{\widehat{f} \cdot \widehat{g}}$$

We need:

$$\frac{1}{2^{2n}}\sum_{z}\widehat{\widehat{f}\cdot\widehat{g}}(z)|z\rangle = H\left(\frac{1}{2^{3n/2}}\underbrace{\sum_{y}\widehat{f}(y)\widehat{g}(y)|y\rangle}_{\text{So let's compute this}}\right)$$

FFT-based Linear Attacks

Correlation State and Applications

Conclusion

Computing |Cor> (ctd.)

• Compute *f* in the amplitude (doable)

$$\sum_{x} f(x) \ket{x} \ \sum_{y} \widehat{f}(y) \ket{y}$$

3 Compute \hat{g} (**not easy**)

2 Apply H (easy)

$$\sum_{y} \widehat{f}(y) \ket{y} \ket{\widehat{g}(y)}$$

• Transfer $\hat{g}(y)$ into the amplitude (doable)

$$\sum_{y} \widehat{f}(y) \widehat{g}(y) \ket{y}$$

FFT-based Linear Attacks

Correlation State and Applications

Conclusion O

Computing |Cor> (ctd.)

There is a quantum algorithm that (on empty input $|0\rangle$) returns $|Cor\rangle$.

The time complexity is dominated by:

- (a few) queries to E_{K} (to compute f)
- (a few) computations of \widehat{g}

FFT-based Linear Attacks

Correlation State and Applications

Conclusion

Using the correlation state

Classical case

- We compute all $\widehat{\operatorname{cor}}(z)$
- We find the biggest one(s)

Quantum case

- We can compute $|Cor\rangle = \sum_{z} \widehat{cor}(z) |z\rangle$
- We **do not** have access to the values

$|\text{Cor}\rangle$ is a superposition of subkey guesses where the good guess has a higher amplitude

Idea: use $|Cor\rangle$ as a **shortcut** in an exhaustive key search.

FFT-based Linear Attacks

Correlation State and Applications

Conclusion

Attack algorithm

Recall Grover's search:

- () take a key at random $ightarrow rac{1}{\sqrt{2^{|\mathsf{K}|}}}\sum_{z}|z
 angle$
- ② check if it's good $ightarrow rac{1}{\sqrt{2^{|\mathsf{K}|}}}\sum_{z} \ket{z}\ket{\mathsf{flag}}$
- (3) use the quantum search black-box \rightarrow time $\simeq \sqrt{2^{|\mathsf{K}|}}$

Instead:

- **1** start from $|\text{Cor}\rangle \to \sum_{z} \widehat{\operatorname{cor}}(z) |z\rangle$ bigger on k
- Ocheck if the key guess is good
- (a) use the quantum search black-box \rightarrow time smaller than $\sqrt{2^{|\mathsf{K}|}}$

FFT-based Linear Attacks

Correlation State and Applications

Conclusion

Quantum - classical comparison

Classical cryptanalysis only needs to distinguish. \implies extremely small correlations are used

The speedup here depends directly on the correlation \implies we would like bigger correlations!

Linear	Cryptanalysis
0000	00

FFT-based Linear Attacks

Correlation State and Applications

Conclusion

Conclusion

- Using the QFT to accelerate a **statistical** attack
- Still few (working) applications so far

Open question:

- $\bullet\,$ Most issues would be solved if we had an efficient algorithm to find the largest correlation in $|{\rm Cor}\rangle$
- $\bullet\,$ However, if $|{\rm Cor}\rangle$ is produced as a black-box, this seems very difficult

Report: ePrint 2023/184

Thank you!