Simplified MITM Modeling for Permutations: New (Quantum) Attacks

André Schrottenloher ${ }^{1}$ and Marc Stevens ${ }^{2}$

${ }^{1}$ Inria, Univ Rennes, CNRS, IRISA
${ }^{2}$ Cryptology Group, CWI

Estatulehed by the Europen Comrivesion

Hash functions and preimages

Small-range hash function or compression function:

$$
H:\{0,1\}^{\mathrm{n}+\mathrm{m}} \rightarrow\{0,1\}^{\mathrm{n}}
$$

Preimage resistance is one of the security goals:

- For any target t , finding a preimage of t (x such that $H(x)=\mathrm{t}$) should take time 2^{n}
- If we can find a preimage in less than 2^{n} time, we have an attack

Most compression functions are built from permutations using a feedforward (XOR input and output).

Example

Example: Haraka-512 (v2)

Haraka-512 : $\left\{\begin{array}{l}\{0,1\}^{512} \rightarrow\{0,1\}^{256} \\ x \mapsto \operatorname{trunc}_{256}(x \oplus P(x))\end{array}\right.$
defined using a permutation P on 512 bits.

Finding a preimage of t by Haraka-512
Finding \times such that $\operatorname{trunc}_{256}(x \oplus P(x))=t$
॥
Finding \times such that $\operatorname{trunc}_{256}(\mathrm{x}) \oplus \mathrm{t}=\operatorname{trunc}_{256}(P(\mathrm{x}))$
I
Finding x such that x and $P(\mathrm{x})$ have 256 bits of linear relation.

The MITM Paradigm

- We search for x with some relation between x and $P(\mathrm{x})$
- We can take all possible x and check the relations: that's the generic attack

However, P is made of multiple rounds, and the internal state can be cut in multiple parts.

The MITM Paradigm (ctd.)

- guess a subset of the internal state and compute forwards: that's the forward path -
- guess an independent subset of the internal state and compute backwards: that's the backward path \downarrow
- use the matching points between forward \& backward to sieve the pairs and find solutions

The MITM Paradigm (ctd.)

How it started:

- Forward / backward, then match

How it's going:

- Splice-and-cut
- Guess-and-determine
- Initial structure
- 3-subset MITM
- Nonlinearly constrained neutral words [DHS+21]
- Superposition MITM [BGST22]
- ...

Automatic search of MITM attacks

- Search space: "all possible forward $\boldsymbol{\|}$ / backward \downarrow paths"
- Objective function: "the attack complexity"

We minimize the objective on the search space: that gives the best MITM attack.

- [BDG+21] use a MILP model
- The search space is constrained by a complex set of local rules
- Subsequent works [DHS+21,BGST22] added more techniques, but also, more rules

MILP

Minimize $x_{1}+2 x_{2}+6 x_{3}$ under the constraints:

$$
\left\{\begin{array}{c}
y_{1}+x_{1}+x_{2}-2 x_{3} \leq 0 \\
x_{3}+5 x_{2} \geq 0
\end{array} \quad y_{2} \text { is integer } \quad \ldots\right.
$$

B
Bao, Dong, Guo, Li, Shi, Sun, Wang, "Automatic search of Meet-in-the-middle preimage attacks on AES-like hashing", EUROCRYPT 2021

Automatic search of MITM attacks (ctd.)

We use a different modeling strategy than [BDG+21]:

- We target permutations only, but more permutations than before
- We use MILP, but a different model (very simple)
- Our objective includes quantum attacks
- Applications to AES, Haraka, Grøstl, Spongent, Simpira, Sparkle

Quantum MITM attacks

- Haraka has been explicitly designed for post-quantum hash-based signatures (e.g. SPHINCS+)
- We need to look at its classical and quantum preimage security
- Generic classical preimage in time 2^{256} (exhaust. search)
- Haraka-512 is broken: there is a MITM preimage attack in time $2^{240}<2^{256}[B D G+21]$
- But it could still be quantumly safe
- Generic quantum preimage in time 2^{128} (Grover search)
- (New) Haraka-512 is quantumly broken: there is a quantum MITM preimage attack in time $<2^{128}$

Outline

(1) Introduction
(2) The search space: cells
(3) The objective: complexity
(4) Attacking Haraka-512

The search space: cells

SPN permutations and Present

An SPN permutation is like an SPN cipher without a key.

- State: b cells of w bits each
- Round: S-Box layer (S) and linear layer (P)

Present is a block cipher with 16 cells of 4 bits ($=64$ bits). The linear layer permutes the bits.

(That's a small Present with 4 cells).

The case of AES

- AES is a block cipher with an 4×4 state of 8 -bit S-Boxes (bytes).
- The linear layer permutes the bytes (Shiftrows) and mixes the columns (MixColumns).

The Super S-Box

If we put together MC and SB, it creates a Super S-Box acting on $4 \times 8=32$ bits. This:

Looks like this:

In our abstraction, AES is a disguised Present.

Cell-based representation

- Remove any round constants
- Consider each S-Box as an arbitrary function S_{j}^{i}
- Replace each S-Box S_{j}^{i} by a cell x_{j}^{i}
- Each cell has a list of possible assignments: the table of S_{j}^{i}
- Only linear relations between cells remain
- We must find an assignment to all cells that satisfies all linear relations

The search space

A MITM attack path is defined by 3 sets of cells:

- X_{F} : forwards
- X_{B} : backwards 4
- Merged: $X_{M}=X_{F} \cup X_{B}$

This is our search space: the possible choices of X_{F} and X_{B}.

The objective: complexity

The attack algorithm

$\mathcal{R}[X]:=$ all assignments of cells in X that satisfy the linear relations.

The attack does:
(1) Compute $\mathcal{R}\left[\mathrm{X}_{\mathrm{F}}\right]$ (forward path)
(2) Compute $\mathcal{R}\left[X_{B}\right]$ (backward path)
(3) Compute $\mathcal{R}\left[X_{M}\right]$

- For each assignment in $\mathcal{R}\left[X_{M}\right]$, check if this is a solution

The forward list $\mathcal{R}\left[X_{F}\right]$

We go forwards. Round by round, we guess the missing bits: 4 at rd. 0 , $3+3$ at rd. 1, 2 at rd. 2

- So, we have a valid assignment in time 1 , memoryless.
- $\mathcal{R}\left[X_{F}\right]$ can be computed in $\left|\mathcal{R}\left[X_{F}\right]\right|:$
(in $\log _{2}$) \sum weights of cells $-\sum$ weights of edges $=4 \times 4-4=12$

The backward list $\mathcal{R}\left[X_{B}\right]$

We go backwards. Round by round, we guess the missing bits: 4 at rd. $3,3+3$ at rd. 2, 2 at rd. 1

- So, we have a valid assignment in time 1 , memoryless.
- $\mathcal{R}\left[\mathrm{X}_{\mathrm{B}}\right]$ can be computed in $\left|\mathcal{R}\left[\mathrm{X}_{\mathrm{B}}\right]\right|$:
(in $\log _{2}$) \sum weights of cells $-\sum$ weights of edges $=4 \times 4-4=12$

The merged list $\mathcal{R}\left[X_{F} \cup X_{B}\right]$

$$
\left|\mathcal{R}\left[X_{M}\right]\right|=\left|\mathcal{R}\left[X_{F}\right]\right| \times\left|\mathcal{R}\left[X_{B}\right]\right| /\left(2^{\text {new edges }}\right)
$$

Forward: 15 bits (3.75 cells); Backward: 12 bits (3 cells) Merged: $15+12-12=15$ bits (3.75 cells).

Classical / quantum merging

- Build the smallest list (e.g., forward)
- Sort it
- Go through the backward list and search for matches
- Test any produced partial solution

Attack complexity

- Classical time:
- Quantum time:

$$
\left|\mathcal{R}\left[\mathrm{X}_{\mathrm{F}}\right]\right|+\max \left(\left|\mathcal{R}\left[\mathrm{X}_{\mathrm{B}}\right]\right|,\left|\mathcal{R}\left[X_{M}\right]\right|\right)
$$

$$
\left|\mathcal{R}\left[\mathrm{X}_{\mathrm{F}}\right]\right|+\sqrt{\max \left(\left|\mathcal{R}\left[\mathrm{X}_{\mathrm{B}}\right]\right|,\left|\mathcal{R}\left[X_{M}\right]\right|\right)}
$$

- Classical memory:
- Quantum memory:

$\left|\mathcal{R}\left[X_{F}\right]\right|$

$\left|\mathcal{R}\left[X_{F}\right]\right|$

- the complexities depend on $\left|\mathcal{R}\left[X_{F}\right]\right|,\left|\mathcal{R}\left[X_{B}\right]\right|,\left|\mathcal{R}\left[X_{M}\right]\right|$
- the complexities depend only on X_{F} and X_{B}

MILP strategy

Search space: boolean variables for X_{F} and X_{B}
\Downarrow
Deduce the quantities $\log _{2}\left|\mathcal{R}\left[X_{F}\right]\right|, \log _{2}\left|\mathcal{R}\left[X_{B}\right]\right|, \log _{2}\left|\mathcal{R}\left[X_{M}\right]\right|$ by linear inequalities
\Downarrow
Deduce the time and memory complexities (classical and quantum, in $\log _{2}$) of an attack based on X_{F} and X_{B}. This is the objective function.

Technical details

1. Reducing the memory

- Matching points of the form $\longleftrightarrow \rightarrow$ can be turned into global guesses \leftrightarrow
- This precomputes some matches and reduces the list sizes

2. AES MixColumns

- In the AES case, the box is actually a (linear, MDS) MixColumns operation
- We can "match through MixColumns" to reduce $\left|\mathcal{R}\left[X_{M}\right]\right|$
- This can be modeled easily

Attacking Haraka-512

Haraka-512 v2

- 512-bit to 256-bit hash function: $x \mapsto \operatorname{trunc}_{256}\left(P_{512}(x) \oplus x\right)$
- AES-based
- Finding a preimage is a MITM problem on P_{512}

Attacking Haraka-512 v2

Ref.	Rounds	Model	Time	Memory
[BDG+21]	$5.5 / 5$	Classical	2^{240}	2^{128}
New	$5.5 / 5$	Classical	2^{240}	2^{16}
New	$5.5 / 5$	Quantum	$2^{123.34}$	2^{16}
New	$\mathbf{5 / 5}$	Classical	2^{224}	2^{32}

Attacking Haraka-512 v2 (ctd.)

Path for $5 / 5$ rounds:

Attacking Haraka-512 v2 (ctd.)

A low-memory (full) MITM preimage attack can be a partial preimage attack that we repeat many times.
\Longrightarrow for Haraka-512 v2, 64-bit partial preimages in about 2^{32} time and memory.

Conclusion

- Modeling MITM attacks can be very simple for permutations
- MITM attacks perform well in the quantum setting
- Ongoing work: extending our approach to the key-schedule path

> Full version: ePrint 2022/189
> Code: github.com/AndreSchrottenloher/mitm-milp

Thank you!

Technical details

When the two lists meet

Backward and forward will meet at matching points. There are two types of matching points:

- $\rightarrow \leftarrow$ (forward cell up, backward cell down)
- $\longleftrightarrow \rightarrow$ (backward cell up, forward cell down)

When the two lists meet (ctd.)

- We don't do anything special with the $\rightarrow \leftarrow$ matchings: they simply reduce the merged list size.
- But we turn the $\longleftrightarrow \rightarrow$ into \leftrightarrow : we guess globally the value of these edges. This reduces the memory.

Global guesses and memory reduction

We guess an amount g of \leftrightarrow edges, then we merge the forward and backward lists.

- All list sizes are reduced by g, which compensates the new loop on g.
- The classical time complexity is unchanged, but the memory complexity is reduced.
- The quantum time complexity is changed.
- g is still defined from X_{F} and X_{B} by linear inequalities.

AES MixColumns

Due to MC, the AES Super S-Box has the property:
If we know $c>4$ edges in input and output to the Super S-Box, then we can match an amount of $c-4$.

We use this for additional degrees of matching, which can also be converted into global guesses.

E.g., if we have: $\left(y_{0}, y_{1}, *, y_{3}\right)=M C\left(*, x_{1}, x_{2}, x_{3}\right)$ we can rewrite this as a system of two linear equations in $y_{0}, y_{1}, y_{2}, x_{1}, x_{2}, x_{3}$ (because MC is MDS).

AES MixColumns (ctd.)

Here is an AES-like situation of matching through MixColumns: there is 1 bytes of matching at each of $x_{0}^{2}, x_{1}^{2}, x_{2}^{2}, x_{3}^{2}$.

AES MixColumns (ctd.)

- new AES-specific rule: cells with enough $\downarrow \uparrow$ edges are added to X_{M}
- now these implicit matchings are properly counted
- finally, we can also convert these matching into guesses (like global \leftrightarrow edges)

