Simplified MITM Modeling for Permutations: New (Quantum) Attacks

André Schrottenloher¹ and Marc Stevens²

¹ Inria, Univ Rennes, CNRS, IRISA ² Cryptology Group, CWI

The search space: cells

The objective: complexity

Attacking Haraka-512

2/31

Hash functions and preimages

Small-range hash function or compression function:

 $H : \{0,1\}^{n+m} \to \{0,1\}^n$

Preimage resistance is one of the security goals:

- For any target t, finding a **preimage** of t (x such that H(x) = t) should take time 2^n
- If we can find a preimage in less than 2ⁿ time, we have an attack

Most compression functions are built from **permutations** using a **feedforward** (XOR input and output).

Example

The search space: cells

The objective: complexity

Attacking Haraka-512

Example: Haraka-512 (v2)

Haraka-512 :
$$\begin{cases} \{0,1\}^{512} \to \{0,1\}^{256} \\ x \mapsto \mathsf{trunc}_{256}(x \oplus P(x)) \end{cases}$$

defined using a permutation P on 512 bits.

Finding a preimage of t by Haraka-512 \uparrow Finding x such that trunc₂₅₆(x \oplus P(x)) = t \uparrow Finding x such that trunc₂₅₆(x) \oplus t = trunc₂₅₆(P(x)) \uparrow Finding x such that x and P(x) have 256 bits of linear relation.

The search space: cells

The objective: complexity

Attacking Haraka-512

The MITM Paradigm

- We search for x with some relation between x and P(x)
- We can take all possible x and check the relations: that's the generic attack

However, P is made of multiple rounds, and the internal state can be cut in multiple parts.

The search space: cells

The objective: complexity

Attacking Haraka-512

The MITM Paradigm (ctd.)

- guess a subset of the internal state and compute forwards: that's the forward path ►
- guess an independent subset of the internal state and compute backwards: that's the backward path ◀
- use the **matching points** between forward & backward to sieve the pairs and find solutions

The search space: cells

The objective: complexity

Attacking Haraka-512

The MITM Paradigm (ctd.)

How it started:

Forward / backward, then match

How it's going:

- Splice-and-cut
- Guess-and-determine
- Initial structure
- 3-subset MITM
- Nonlinearly constrained neutral words [DHS+21]
- Superposition MITM [BGST22]

The search space: cells

The objective: complexity

Attacking Haraka-512

Automatic search of MITM attacks

- Search space: "all possible forward ► / backward ◄ paths"
- Objective function: "the attack complexity"

We **minimize** the **objective** on the **search space**: that gives the best MITM attack.

- [BDG+21] use a MILP model
- The search space is constrained by a complex set of local rules
- Subsequent works [DHS+21,BGST22] added more techniques, but also, more rules

MILP

Minimize
$$x_1 + 2x_2 + 6x_3$$
 under the constraints:

$$\begin{cases}
y_1 + x_1 + x_2 - 2x_3 \le 0 & y_1 \ge 0 \\
x_3 + 5x_2 \ge 0 & x_2 \text{ is integer}
\end{cases}$$

Bao, Dong, Guo, Li, Shi, Sun, Wang, "Automatic search of Meet-in-the-middle preimage attacks on AES-like hashing", EUROCRYPT 2021

. . .

The search space: cells

The objective: complexity

Attacking Haraka-512

Automatic search of MITM attacks (ctd.)

We use a different modeling strategy than [BDG+21]:

- We target permutations only, but more permutations than before
- We use MILP, but a different model (very simple)
- Our objective includes quantum attacks
- Applications to AES, Haraka, Grøstl, Spongent, Simpira, Sparkle

The search space: cells

The objective: complexity

Attacking Haraka-512

Quantum MITM attacks

- Haraka has been explicitly designed for post-quantum hash-based signatures (e.g. SPHINCS+)
- We need to look at its classical and quantum preimage security
- Generic classical preimage in time 2²⁵⁶ (exhaust. search)
- Haraka-512 is broken: there is a MITM preimage attack in time 2²⁴⁰ < 2²⁵⁶ [BDG+21]
- But it could still be quantumly safe

- Generic quantum preimage in time 2¹²⁸ (Grover search)
- (New) Haraka-512 is quantumly broken: there is a quantum MITM preimage attack in time < 2¹²⁸

The search space: cells

The objective: complexity

Attacking Haraka-512

Outline

- **2** The search space: cells
- **3** The objective: complexity
- **4** Attacking Haraka-512

Introduction	The search space: cells	The objective: complexity	Attacking Haraka-512
00000000	•00000	00000000	000000

The search space: cells

The search space: cells ○●○○○○ The objective: complexity

Attacking Haraka-512

SPN permutations and Present

An SPN permutation is like an SPN cipher without a key.

- State: *b* cells of *w* bits each
- Round: S-Box layer (S) and linear layer (P)

Present is a block cipher with 16 cells of 4 bits (= 64 bits). The linear layer permutes the bits.

(That's a small **Present** with 4 cells).

Introduction	The search space: cells ○○●○○○	The objective: complexity	Attacking Haraka-512
The case of	of AES		

- **AES** is a block cipher with an 4×4 state of 8-bit S-Boxes (bytes).
- The linear layer permutes the bytes (Shiftrows) and mixes the columns (MixColumns).

The search space: cells ○○○●○○ The objective: complexity

Attacking Haraka-512

The Super S-Box

If we put together MC and SB, it creates a Super S-Box acting on $4\times8=32$ bits. This:

Looks like this:

In our abstraction, AES is a disguised Present.

The search space: cells ○○○○●○ The objective: complexity

Attacking Haraka-512

Cell-based representation

- Remove any round constants
- Consider each S-Box as an arbitrary function S_i^i
- Replace each S-Box S_j^i by a **cell** x_j^i
- Each cell has a list of **possible assignments**: the table of S_i^i
- Only linear relations between cells remain
- We must find an assignment to all cells that satisfies all linear relations

The search space: cells 00000● The objective: complexity

Attacking Haraka-512

The search space

A MITM attack path is defined by 3 sets of cells:

- X_F: forwards ►
- X_B: backwards ◀
- Merged: $X_M = X_F \cup X_B$

This is our search space: the possible choices of X_F and X_B .

Introduction
000000000

The search space: cells

The objective: complexity

Attacking Haraka-512

The objective: complexity

André Schrottenloher and Marc Stevens

The search space: cells

The objective: complexity

Attacking Haraka-512

The attack algorithm

$\mathcal{R}[X] :=$ all assignments of cells in X that satisfy the linear relations.

The attack does:

- Compute $\mathcal{R}[X_F]$ (forward path)
- **2** Compute $\mathcal{R}[X_B]$ (backward path)
- **3** Compute $\mathcal{R}[X_M]$
 - For each assignment in $\mathcal{R}[X_M]$, check if this is a solution

The search space: cells

The objective: complexity

Attacking Haraka-512

The forward list $\mathcal{R}[X_F]$

We go **forwards**. Round by round, we guess the missing bits: 4 at rd. 0, 3 + 3 at rd. 1, 2 at rd. 2

- So, we have a valid assignment in time 1, memoryless.
- $\mathcal{R}[X_F]$ can be computed in $|\mathcal{R}[X_F]|$:

(in $\log_2)~\sum$ weights of cells – \sum weights of edges = $4\!\times\!4\!-\!4 = 12$

The search space: cells

The objective: complexity

Attacking Haraka-512

The backward list $\mathcal{R}[X_B]$

We go **backwards**. Round by round, we guess the missing bits: 4 at rd. 3, 3 + 3 at rd. 2, 2 at rd. 1

- So, we have a valid assignment in time 1, memoryless.
- $\mathcal{R}[X_B]$ can be computed in $|\mathcal{R}[X_B]|$:

(in $\log_2)~\sum$ weights of cells – \sum weights of edges = $4\!\times\!4\!-\!4 = 12$

The search space: cells

The objective: complexity

Attacking Haraka-512

The merged list $\mathcal{R}[X_F \cup X_B]$

 $|\mathcal{R}[X_M]| = |\mathcal{R}[X_F]| \times |\mathcal{R}[X_B]|/(2^{\text{new edges}})$

Forward: 15 bits (3.75 cells); Backward: 12 bits (3 cells) Merged: 15 + 12 - 12 = 15 bits (3.75 cells).

The search space: cells

The objective: complexity

Attacking Haraka-512

Classical / quantum merging

- Build the smallest list (e.g., forward)
- Sort it
- Go through the **backward** list and search for matches
- Test any produced partial solution

The search space: cells

The objective: complexity

Attacking Haraka-512

Attack complexity

• Classical time:	• Quantum time:
$ \mathcal{R}[X_{F}] + \max(\mathcal{R}[X_{B}] , \mathcal{R}[X_{M}])$	$ \mathcal{R}[X_{F}] + \sqrt{\max\left(\mathcal{R}[X_{B}] , \mathcal{R}[\mathcal{X}_{M}] \right)}$
Classical memory:	• Quantum memory:
$ \mathcal{R}[X_F] $	$ \mathcal{R}[X_F] $
a the complexities demand on 17	

- the complexities depend on $|\mathcal{R}[X_F]|, |\mathcal{R}[X_B]|, |\mathcal{R}[X_M]|$
- \bullet the complexities depend only on X_{F} and X_{B}

The search space: cells

The objective: complexity

Attacking Haraka-512

MILP strategy

Search space: boolean variables for X_F and X_B $\downarrow \downarrow$ Deduce the quantities $\log_2 |\mathcal{R}[X_F]|$, $\log_2 |\mathcal{R}[X_B]|$, $\log_2 |\mathcal{R}[X_M]|$ by linear inequalities $\downarrow \downarrow$ Deduce the time and memory complexities (classical and quantum, in \log_2) of an attack based on X_F and X_B . This is the objective function.

The search space: cells

The objective: complexity

Attacking Haraka-512

Technical details

1. Reducing the memory

- Matching points of the form $\leftarrow \rightarrow$ can be turned into global guesses \leftrightarrow
- This precomputes some matches and reduces the list sizes

2. AES MixColumns

- In the AES case, the box is actually a (linear, MDS) MixColumns operation
- We can "match through MixColumns" to reduce $|\mathcal{R}[X_M]|$
- This can be modeled easily

Introduction	Th
00000000	00

he search space: cells

The objective: complexity

Attacking Haraka-512

Attacking Haraka-512

André Schrottenloher and Marc Stevens

The search space: cells

The objective: complexity

Attacking Haraka-512 00000

Haraka-512 v2

- 512-bit to 256-bit hash function: $x \mapsto \operatorname{trunc}_{256}(P_{512}(x) \oplus x)$
- AES-based
- Finding a preimage is a MITM problem on P_{512}

The search space: cells

The objective: complexity

Attacking Haraka-512

Attacking Haraka-512 v2

Ref.	Rounds	Model	Time	Memory		
[BDG+21]	5.5/5	Classical	2 ²⁴⁰	2 ¹²⁸		
New	5.5/5	Classical	2 ²⁴⁰	2 ¹⁶		
New	5.5/5	Quantum	$2^{123.34}$	2 ¹⁶		
New	5/5	Classical	2 ²²⁴	2 ³²		

The search space: cells

The objective: complexity

Attacking Haraka-512

Attacking Haraka-512 v2 (ctd.)

The search space: cells

The objective: complexity

Attacking Haraka-512

Attacking Haraka-512 v2 (ctd.)

A low-memory (full) MITM preimage attack can be a partial preimage attack that we repeat many times.

⇒ for Haraka-512 v2, 64-bit partial preimages in about 2³² time and memory.

Input x (512 bits = 4×128 bits)																			
e7	d4	9f	2	d	1	6	f6	53	65	С	d 9	99	33	0	1	d5	2a	66	a1
3f	05	c4	9	4		/a	61	37	17	6	o 8	Зc	47	1:	E	1f	10	08	СС
2e	53	f6	6	a	5	5e	83	a9	6d	f	0 7	7a	b2	b	э	69	a4	45	f4
b2	5c	0b	9	3	5	/a	ee	e2	c6	1	7 5	52	b3	74	1	e9	e4	79	f3
Output Haraka-512(x) (256 bits)																			
	4	d 3	35	de	97	63	ba	a c	0 f0	4c	dc	c 6	54 (бb	d1	еб	19	15	
	0	0 0	0	00	00	cb	52	1 f	8 2b	9d	36	5	50 0	∋1	00	00	00	00	

The search space: cells

The objective: complexity

Attacking Haraka-512

Conclusion

- Modeling MITM attacks can be very simple for permutations
- MITM attacks perform well in the quantum setting
- Ongoing work: extending our approach to the key-schedule path

Full version: ePrint 2022/189 Code: github.com/AndreSchrottenloher/mitm-milp

Thank you!

Technical details

Technical details

When the two lists meet

Backward and forward will meet at **matching points**. There are two types of matching points:

- $\rightarrow \leftarrow$ (forward cell up, backward cell down)
- $\leftarrow \rightarrow$ (backward cell up, forward cell down)

Technical details 00●0000

When the two lists meet (ctd.)

- We don't do anything special with the $\rightarrow \leftarrow$ matchings: they simply reduce the merged list size.
- But we turn the ←→ into ↔: we guess globally the value of these edges. This reduces the memory.

Global guesses and memory reduction

We guess an amount g of \leftrightarrow edges, then we merge the **forward** and **backward** lists.

- All list sizes are reduced by g, which compensates the new loop on g.
- The classical time complexity is unchanged, but the memory complexity is reduced.
- The quantum time complexity is changed.

• g is still defined from X_F and X_B by linear inequalities.

AES MixColumns

Due to MC, the AES Super S-Box has the property:

If we know c > 4 edges in input and output to the Super S-Box, then we can match an amount of c - 4.

We use this for additional degrees of matching, which can also be converted into global guesses.

E.g., if we have: $(y_0, y_1, *, y_3) = MC(*, x_1, x_2, x_3)$ we can rewrite this as a system of two linear equations in $y_0, y_1, y_2, x_1, x_2, x_3$ (because MC is MDS).

Technical details 00000●0

AES MixColumns (ctd.)

Here is an AES-like situation of matching through MixColumns: there is 1 bytes of matching at each of $x_0^2, x_1^2, x_2^2, x_3^2$.

Technical details

AES MixColumns (ctd.)

- new AES-specific rule: cells with enough $\downarrow \uparrow$ edges are added to X_M
- now these implicit matchings are properly counted
- finally, we can also convert these matching into guesses (like **global** \leftrightarrow edges)

